“Five New State Governors Aim for 100% Renewables” • Five governors-elect in Colorado, Illinois, Nevada, Connecticut, and Maine, states with a combined population of 26 million, put forth campaign goals of 100% renewable electricity. Currently, only California and Hawaii have a deadline to move to 100% zero-carbon electricity. [pv magazine International]
A photovoltaic system converts light into electrical direct current (DC) by taking advantage of the photoelectric effect.[51] Solar PV has turned into a multi-billion, fast-growing industry, continues to improve its cost-effectiveness, and has the most potential of any renewable technologies together with CSP.[52][53] Concentrated solar power (CSP) systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. Commercial concentrated solar power plants were first developed in the 1980s. CSP-Stirling has by far the highest efficiency among all solar energy technologies.
By clicking above, you authorize Solar Power Authority and up to four Solar Companies to call you and send you pre-recorded messages and text messages at the number you entered above, using an autodialer, with offers about their products or services, even if your phone number is on any national or state “Do Not Call” list. Message and data rates may apply. Your consent here is not based on a condition of purchase.
In 2007, the US Congress directed the Department of Energy to report on ways to reduce water consumption by CSP. The subsequent report noted that dry cooling technology was available that, although more expensive to build and operate, could reduce water consumption by CSP by 91 to 95 percent. A hybrid wet/dry cooling system could reduce water consumption by 32 to 58 percent.[138] A 2015 report by NREL noted that of the 24 operating CSP power plants in the US, 4 used dry cooling systems. The four dry-cooled systems were the three power plants at the Ivanpah Solar Power Facility near Barstow, California, and the Genesis Solar Energy Project in Riverside County, California. Of 15 CSP projects under construction or development in the US as of March 2015, 6 were wet systems, 7 were dry systems, 1 hybrid, and 1 unspecified.

“Five New State Governors Aim for 100% Renewables” • Five governors-elect in Colorado, Illinois, Nevada, Connecticut, and Maine, states with a combined population of 26 million, put forth campaign goals of 100% renewable electricity. Currently, only California and Hawaii have a deadline to move to 100% zero-carbon electricity. [pv magazine International]
Wind turbines need wind. Not just any wind, but the nicely flowing, smooth, laminar kind. That cannot be found at 30 feet height. It can usually not be found at 60 feet. Sometimes you find it at 80 feet. More often than not it takes 100 feet of tower to get there. Those towers cost as much or more, installed, as the turbine itself. How much tower you need for a wind turbine to live up to its potential depends on your particular site; on the trees and structures around it etc. Close to the ground the wind is turbulent, and makes a poor fuel for a small wind turbine.
Renewable energy resources exist over wide geographical areas, in contrast to other energy sources, which are concentrated in a limited number of countries. Rapid deployment of renewable energy and energy efficiency is resulting in significant energy security, climate change mitigation, and economic benefits.[8] The results of a recent review of the literature[9] concluded that as greenhouse gas (GHG) emitters begin to be held liable for damages resulting from GHG emissions resulting in climate change, a high value for liability mitigation would provide powerful incentives for deployment of renewable energy technologies. In international public opinion surveys there is strong support for promoting renewable sources such as solar power and wind power.[10] At the national level, at least 30 nations around the world already have renewable energy contributing more than 20 percent of energy supply. National renewable energy markets are projected to continue to grow strongly in the coming decade and beyond.[11] Some places and at least two countries, Iceland and Norway generate all their electricity using renewable energy already, and many other countries have the set a goal to reach 100% renewable energy in the future. For example, in Denmark the government decided to switch the total energy supply (electricity, mobility and heating/cooling) to 100% renewable energy by 2050.[12]
At GE, product evolution is at our core, and we are continuously working to develop the next generation of wind energy. Beginning in 2002 with one wind turbine model, we now offer a full suite of turbines created for a variety of wind environments. We offer increased value to customers with proven performance, reliability, and availability. Our portfolio of turbines feature rated capacities from 1.7 MW to 5.3 MW (Onshore) and 6 MW to 12 MW (Offshore), we are uniquely suited to meet the needs of a broad range of wind regimes. 
Since having the Peimar Solar Panels installed and listening to the advice of the owner I have saved a lot of money on my electric bill. Texas Solar Integrated did the work as quickly and efficiently as promised. If the panels look dirty, since I live around cement plants, I just get my high pressure water hose and spray them off. Thank you to this company and the installers. The owner or another contractor in the office is always ready to answer your questions before and after installation.... read more
The energy in the wind goes up with the cube of the wind speed. Double the wind speed and you have 2 * 2 * 2 = 8 times the energy! Sit back and let the full weight of that sink in for a moment: It means that even a small difference in annual average wind speed will make a BIG difference in how much your wind turbine will produce: Putting that turbine in a place that has just 10% more wind will net you 1.1 * 1.1 * 1.1 = 1.33 = a full 33% more energy!
The life-cycle greenhouse-gas emissions of solar power are in the range of 22 to 46 gram (g) per kilowatt-hour (kWh) depending on if solar thermal or solar PV is being analyzed, respectively. With this potentially being decreased to 15 g/kWh in the future.[121] For comparison (of weighted averages), a combined cycle gas-fired power plant emits some 400–599 g/kWh,[122] an oil-fired power plant 893 g/kWh,[122] a coal-fired power plant 915–994 g/kWh[123] or with carbon capture and storage some 200 g/kWh, and a geothermal high-temp. power plant 91–122 g/kWh.[122] The life cycle emission intensity of hydro, wind and nuclear power are lower than solar's as of 2011 as published by the IPCC, and discussed in the article Life-cycle greenhouse-gas emissions of energy sources. Similar to all energy sources were their total life cycle emissions primarily lay in the construction and transportation phase, the switch to low carbon power in the manufacturing and transportation of solar devices would further reduce carbon emissions. BP Solar owns two factories built by Solarex (one in Maryland, the other in Virginia) in which all of the energy used to manufacture solar panels is produced by solar panels. A 1-kilowatt system eliminates the burning of approximately 170 pounds of coal, 300 pounds of carbon dioxide from being released into the atmosphere, and saves up to 105 gallons of water consumption monthly.[124]
Biomass can be converted to other usable forms of energy such as methane gas or transportation fuels such as ethanol and biodiesel. Rotting garbage, and agricultural and human waste, all release methane gas – also called landfill gas or biogas. Crops, such as corn and sugarcane, can be fermented to produce the transportation fuel, ethanol. Biodiesel, another transportation fuel, can be produced from left-over food products such as vegetable oils and animal fats.[69] Also, biomass to liquids (BTLs) and cellulosic ethanol are still under research.[70][71] There is a great deal of research involving algal fuel or algae-derived biomass due to the fact that it's a non-food resource and can be produced at rates 5 to 10 times those of other types of land-based agriculture, such as corn and soy. Once harvested, it can be fermented to produce biofuels such as ethanol, butanol, and methane, as well as biodiesel and hydrogen. The biomass used for electricity generation varies by region. Forest by-products, such as wood residues, are common in the United States. Agricultural waste is common in Mauritius (sugar cane residue) and Southeast Asia (rice husks). Animal husbandry residues, such as poultry litter, are common in the United Kingdom.[72]
A typical house usually requires a home wind turbine with a 5 kW generating capacity to meet all its energy requirements. A turbine that offers this much power would have to be around 13 to 18 feet in diameter and positioned in an area where strong winds often pass through. There are also plenty of smaller, cheaper turbines, but these variants produce less power and are less reliable than their more expensive counterparts.
The stiffness of composites is determined by the stiffness of fibers and their volume content. Typically, E-glass fibers are used as main reinforcement in the composites. Typically, the glass/epoxy composites for wind blades contain up to 75 weight % glass. This increases the stiffness, tensile and compression strength. A promising source of the composite materials in the future is glass fibers with modified compositions like S-glass, R-glass etc. Some other special glasses developed by Owens Corning are ECRGLAS, Advantex and most recently WindStrand glass fibers. [49]
Reliance on rare earth minerals for components has risked expense and price volatility as China has been main producer of rare earth minerals (96% in 2009) and had been reducing its export quotas of these materials.[56] In recent years, however, other producers have increased production of rare earth minerals and China has removed its reduced export quota on rare earths leading to an increased supply and decreased cost of rare earth minerals, increasing the viability of the implementation of variable speed generators in wind turbines on a large scale.[57]

The primary obstacle that is preventing the large scale implementation of solar powered energy generation is the inefficiency of current solar technology. Currently, photovoltaic (PV) panels only have the ability to convert around 24% of the sunlight that hits them into electricity.[125] At this rate, solar energy still holds many challenges for widespread implementation, but steady progress has been made in reducing manufacturing cost and increasing photovoltaic efficiency. Both Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), have heavily funded solar research programs. The NREL solar program has a budget of around $75 million [126] and develops research projects in the areas of photovoltaic (PV) technology, solar thermal energy, and solar radiation.[127] The budget for Sandia’s solar division is unknown, however it accounts for a significant percentage of the laboratory’s $2.4 billion budget.[128] Several academic programs have focused on solar research in recent years. The Solar Energy Research Center (SERC) at University of North Carolina (UNC) has the sole purpose of developing cost effective solar technology. In 2008, researchers at Massachusetts Institute of Technology (MIT) developed a method to store solar energy by using it to produce hydrogen fuel from water.[129] Such research is targeted at addressing the obstacle that solar development faces of storing energy for use during nighttime hours when the sun is not shining. In February 2012, North Carolina-based Semprius Inc., a solar development company backed by German corporation Siemens, announced that they had developed the world’s most efficient solar panel. The company claims that the prototype converts 33.9% of the sunlight that hits it to electricity, more than double the previous high-end conversion rate.[130] Major projects on artificial photosynthesis or solar fuels are also under way in many developed nations.[131]
The stiffness of composites is determined by the stiffness of fibers and their volume content. Typically, E-glass fibers are used as main reinforcement in the composites. Typically, the glass/epoxy composites for wind blades contain up to 75 weight % glass. This increases the stiffness, tensile and compression strength. A promising source of the composite materials in the future is glass fibers with modified compositions like S-glass, R-glass etc. Some other special glasses developed by Owens Corning are ECRGLAS, Advantex and most recently WindStrand glass fibers. [49]
Commercial concentrated solar power plants were first developed in the 1980s. As the cost of solar electricity has fallen, the number of grid-connected solar PV systems has grown into the millions and utility-scale solar power stations with hundreds of megawatts are being built. Solar PV is rapidly becoming an inexpensive, low-carbon technology to harness renewable energy from the Sun.
A more recent concept for improving our electrical grid is to beam microwaves from Earth-orbiting satellites or the moon to directly when and where there is demand. The power would be generated from solar energy captured on the lunar surface In this system, the receivers would be "broad, translucent tent-like structures that would receive microwaves and convert them to electricity". NASA said in 2000 that the technology was worth pursuing but it is still too soon to say if the technology will be cost-effective.[77]

The PV industry is beginning to adopt levelized cost of electricity (LCOE) as the unit of cost. The electrical energy generated is sold in units of kilowatt-hours (kWh). As a rule of thumb, and depending on the local insolation, 1 watt-peak of installed solar PV capacity generates about 1 to 2 kWh of electricity per year. This corresponds to a capacity factor of around 10–20%. The product of the local cost of electricity and the insolation determines the break even point for solar power. The International Conference on Solar Photovoltaic Investments, organized by EPIA, has estimated that PV systems will pay back their investors in 8 to 12 years.[73] As a result, since 2006 it has been economical for investors to install photovoltaics for free in return for a long term power purchase agreement. Fifty percent of commercial systems in the United States were installed in this manner in 2007 and over 90% by 2009.[74]


Features:Low wind speed start-up(2m/s), high wind power utilization, light,cute, low vibration.Human-friendly design,easy to install and maintain.Blades using reinforced glass fiber, helped with optimized structure and aerodynamic shape, it enhanced wind power coefficient and power generating capacity.Using patented permanent magnet generator and special stator, it effectively reduces torque resistance and guarantees the stability.The 24V DC 400W wind turbine is an eco.
Some people, including Greenpeace founder and first member Patrick Moore,[67][68][69] George Monbiot,[70] Bill Gates[71] and James Lovelock[72] have specifically classified nuclear power as green energy. Others, including Greenpeace's Phil Radford[73][74] disagree, claiming that the problems associated with radioactive waste and the risk of nuclear accidents (such as the Chernobyl disaster) pose an unacceptable risk to the environment and to humanity. However, newer nuclear reactor designs are capable of utilizing what is now deemed "nuclear waste" until it is no longer (or dramatically less) dangerous, and have design features that greatly minimize the possibility of a nuclear accident. These designs have yet to be commercialized. (See: Molten salt reactor)
Wind energy research dates back several decades to the 1970s when NASA developed an analytical model to predict wind turbine power generation during high winds.[136] Today, both Sandia National Laboratories and National Renewable Energy Laboratory have programs dedicated to wind research. Sandia’s laboratory focuses on the advancement of materials, aerodynamics, and sensors.[137] The NREL wind projects are centered on improving wind plant power production, reducing their capital costs, and making wind energy more cost effective overall.[138] The Field Laboratory for Optimized Wind Energy (FLOWE) at Caltech was established to research renewable approaches to wind energy farming technology practices that have the potential to reduce the cost, size, and environmental impact of wind energy production.[139] The president of Sky WindPower Corporation thinks that wind turbines will be able to produce electricity at a cent/kWh at an average which in comparison to coal-generated electricity is a fractional of the cost.[140]
Materials for wind turbine parts other than the rotor blades (including the rotor hub, gearbox, frame, and tower) are largely composed of steel. Modern turbines use a couple of tons of copper for generators, cables, and such.[52] Smaller wind turbines have begun incorporating more aluminum based alloys into these components in an effort to make the turbines lighter and more efficient, and may continue to be used increasingly if fatigue and strength properties can be improved. Prestressed concrete has been increasingly used for the material of the tower, but still requires much reinforcing steel to meet the strength requirement of the turbine. Additionally, step-up gearboxes are being increasingly replaced with variable speed generators, increasing the demand for magnetic materials in wind turbines.[46] In particular, this would require an increased supply of the rare earth metal neodymium.
A Wind Turbine Generator is what makes your electricity by converting mechanical energy into electrical energy. Lets be clear here, they do not create energy or produce more electrical energy than the amount of mechanical energy being used to spin the rotor blades. The greater the “load”, or electrical demand placed on the generator, the more mechanical force is required to turn the rotor. This is why generators come in different sizes and produce differing amounts of electricity.

Over the past fifty years, people have adapted their houses with solar collectors to utilise the incoming solar radiation to heat water and living space. You may have seen homes with solar panels on their roofs. Making use of this energy source can account for up to 40% of your electricity bill, so you can see why some people opt for solar collectors. These collectors can heat water for things such as swimming pools, for general water use or to heat the air inside your house.


This wind generator makes a nice addition to a solar panel system with a small battery bank (my bank is 12vdc with 500 amp hours). The wind generator averages anywhere from 2 to 10 amps on most occasions here in northern Indiana. I have seen the wind generator put out as much as 25 amps during heavy wind conditions (i.e. storms). If you plan to run a large battery bank system then you may want to look into some of the larger KW wind generators or build a solar panel system. I do love the sound of this thing. I would not call it whisper, but it has a nice whirl sound to it when it is charging that puts me to sleep at night. By the way, know your math and do things right. You will find yourself installing some heavy gauge wiring to lower voltage drops that can be a bear to work with.
So how do wind turbines make electricity? Simply stated, a wind turbine works the opposite of a fan. Instead of using electricity to make wind, like a fan, wind turbines use wind to make electricity. The wind turns the blades, which spin a shaft, which connects to a generator and makes electricity. View the wind turbine animation to see how a wind turbine works or take a look inside.

Green Energy Corp’s™ Microgrid as a Service (MaaS) package is a cloud based, subscription service enabling third party developers to utilize GreenBus® and Green Energy Corp expertise in financing, building and deploying microgrids. Included in the MaaS package is the microgrid toolset comprised of software, design and engineering packages, equipment recommendations, construction methods, operations and maintenance support, and financial instruments all delivered from a hosted environment.

There are numerous organizations within the academic, federal, and commercial sectors conducting large scale advanced research in the field of sustainable energy. This research spans several areas of focus across the sustainable energy spectrum. Most of the research is targeted at improving efficiency and increasing overall energy yields.[94] Multiple federally supported research organizations have focused on sustainable energy in recent years. Two of the most prominent of these labs are Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), both of which are funded by the United States Department of Energy and supported by various corporate partners.[95] Sandia has a total budget of $2.4 billion [96] while NREL has a budget of $375 million.[97]
In October 2018, the American Council for an Energy-Efficient Economy (ACEEE) released its annual "State Energy Efficiency Scorecard." The scorecard concluded that states and electric utility companies are continuing to expand energy efficiency measures in order to meet clean energy goals. In 2017, the U.S. spent $6.6 billion in electricity efficiency programs. $1.3 billion was spent on natural gas efficiency. These programs resulted in 27.3 million megawatt hours (MWh) of electricity saved.[160]
Since 2013 the world's highest-situated wind turbine was made and installed by WindAid and is located at the base of the Pastoruri Glacier in Peru at 4,877 meters (16,001 ft) above sea level.[94] The site uses the WindAid 2.5 kW wind generator to supply power to a small rural community of micro entrepreneurs who cater to the tourists who come to the Pastoruri glacier.[95]
There are two types of crystalline silicon, but it’s likely you’ll more often encounter monocrystalline silicon: it has a square-ish structure, and its high silicon content makes it more effective (and more expensive) than other panel materials. The other type of crystalline silicon, polycrystalline, is cheaper but less effective, so it’s used when there’s plenty of space (e.g., on a solar farm)—typically not on residential installs.
Prior to the development of coal in the mid 19th century, nearly all energy used was renewable. Almost without a doubt the oldest known use of renewable energy, in the form of traditional biomass to fuel fires, dates from 790,000 years ago. Use of biomass for fire did not become commonplace until many hundreds of thousands of years later, sometime between 200,000 and 400,000 years ago.[31] Probably the second oldest usage of renewable energy is harnessing the wind in order to drive ships over water. This practice can be traced back some 7000 years, to ships in the Persian Gulf[32] and on the Nile.[33] Moving into the time of recorded history, the primary sources of traditional renewable energy were human labor, animal power, water power, wind, in grain crushing windmills,[32] and firewood, a traditional biomass. A graph of energy use in the United States up until 1900 shows oil and natural gas with about the same importance in 1900 as wind and solar played in 2010.
Sustainable energy is energy that is consumed at insignificant rates compared to its supply and with manageable collateral effects, especially environmental effects. Another common definition of sustainable energy is an energy system that serves the needs of the present without compromising the ability of future generations to meet their energy needs.[1] Not all renewable energy is sustainable. While renewable energy is defined as energy sources that are naturally replenished on a human timescale, sustainable (often referred to as 'clean') energy must not compromise the system in which it is adopted to the point of being unable to provide for future need. The organizing principle for sustainability is sustainable development, which includes the four interconnected domains: ecology, economics, politics and culture.[2] Sustainability science is the study of sustainable development and environmental science.[3]
What is a small wind turbine? Anything under, say, 10 meters rotor diameter (30 feet) is well within the “small wind” category. That works out to wind turbines with a rated power up to around 20 kW (at 11 m/s, or 25 mph). For larger wind turbines the manufacturers are usually a little more honest, and more money is available to do a good site analysis. The information in this article is generic: The same applies to all the other brands and models, be they of the HAWT (Horizontal Axis Wind Turbine) or VAWT (Vertical Axis Wind Turbine) persuasion.
Solar energy is a flexible energy technology: it can be built as distributed generation (located at or near the point of use) or as a central-station, utility-scale solar power plant (similar to traditional power plants). Both of these methods can also store the energy they produce for distribution after the sun sets, using cutting edge solar + storage technologies.
Solar and wind are Intermittent energy sources that supply electricity 10-40% of the time. To compensate for this characteristic, it is common to pair their production with already existing hydroelectricity or natural gas generation. In regions where this isn't available, wind and solar can be paired with significantly more expensive pumped-storage hydroelectricity.

Also, the output voltage and power demand depends entirely upon the appliances you have and how you wish to use them. In addition, the location of the wind turbine generator, would the wind resource keep it constantly rotating for long periods of time or would the generator speed and therefore its output vary up and down with variations in the available wind.
Several initiatives are being proposed to mitigate distribution problems. First and foremost, the most effective way to reduce USA’s CO2 emissions and slow global warming is through conservation efforts. Opponents of the current US electrical grid have also advocated for decentralizing the grid. This system would increase efficiency by reducing the amount of energy lost in transmission. It would also be economically viable as it would reduce the amount of power lines that will need to be constructed in the future to keep up with demand. Merging heat and power in this system would create added benefits and help to increase its efficiency by up to 80-90%. This is a significant increase from the current fossil fuel plants which only have an efficiency of 34%.[92]
As the section above shows, anything under 5 m/s annual average wind speed is not going to be worth-while if you want any economic benefit out of a wind turbine. Even with government incentives, you would be better off with solar for most places. Let us take this a bit further, and assume your backyard is pretty windy, a full 6 m/s (13.4 mph) annual average wind speed at 100′ height. You get a 6 kW wind turbine installed, and shell out $50,000 for that privilege. If the installer did her job properly, the turbine is spinning in nice, clean, laminar air, and it will produce around 13,000 kWh per year. You are the kind of person that wins the lottery on a regular basis, marries a beauty queen (or king), and has kids that all go to ivy-league universities; your wind turbine never breaks and you do not have to shell out a single buck for maintenance over 20 years. Now your turbine has produced around 260,000 kWh of electricity, which works out to 19.2 cents per kWh in cost. Maybe you pay more than for electricity and it is worth it, but your are likely not getting rich, and any repairs and maintenance will drive that price up in a hurry.

FEATURES: Integrated automatic braking system to protect from sudden and high wind speed. Easy DIY installation methods with all materials provided. Can be used in conjunction with solar panels. MPPT Maximum power point tracking built into the wind turbine generator. Made with high quality Polypropylene and Glass Fiber material with a weather resistant seal.
A photovoltaic system converts light into electrical direct current (DC) by taking advantage of the photoelectric effect.[51] Solar PV has turned into a multi-billion, fast-growing industry, continues to improve its cost-effectiveness, and has the most potential of any renewable technologies together with CSP.[52][53] Concentrated solar power (CSP) systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. Commercial concentrated solar power plants were first developed in the 1980s. CSP-Stirling has by far the highest efficiency among all solar energy technologies.
Other cities won’t have it so easy. Take Atlanta. Residents buy energy from Georgia Power, which is owned by investors. As things stand, Atlantans have no control over how their power is generated, though that may change. In 2019, Georgia Power, by state law, has to update its energy plan. Ted Terry, director of the Georgia chapter of the Sierra Club, says the nonprofit is working with Atlanta officials to incorporate renewables, primarily solar, into the state’s plan. Developing such energy sources on a scale that can power a metro area with 5.8 million people, as in Atlanta, or 7.68 million in the San Francisco Bay Area, or 3.3 million in San Diego, will prove challenging. But it doesn’t seem impossible. In 2015, California set a goal of deriving 50 percent of its energy from renewable sources by 2030. Its three investor-owned utilities—Pacific Gas & Electric, Southern California Edison and San Diego Gas & Electric—are poised to achieve that goal just two years from now, or ten years early.
A: A residential solar PV system can cost anywhere from $25,000 to $35,000, on average. Because of the high cost, a power purchase agreement (PPA), loan, or lease are popular options for financing a solar PV system. Naturally, there are benefits and drawbacks with each option. We won’t cover them in detail here, but you can learn more in our article “Financing Options for Solar Power Explained.”
There is one more area where buyers may get a false sense of security: Several states in the US have lists of “approved” wind turbines for their rebate programs. An example of this is the California list. The problem is that approval for this list, and the performance data provided (such as rated power and energy production) are essentially self-certified. The less-scrupulous manufacturers can ‘manufacture’ data and submit it under the pretence that it was measured.  The only value of those lists is in telling you what rebates are available, they do not provide reliable turbine information.
Several refineries that can process biomass and turn it into ethanol are built by companies such as Iogen, POET, and Abengoa, while other companies such as the Verenium Corporation, Novozymes, and Dyadic International[163] are producing enzymes which could enable future commercialization. The shift from food crop feedstocks to waste residues and native grasses offers significant opportunities for a range of players, from farmers to biotechnology firms, and from project developers to investors.[164]
Most PV cells are used by homes and small businesses. PV cells are expensive, they require a lot of room and the electricity produced is reliant on lots of sunshine, so they are not practical to use for large industry at this stage. Until technology improves, users must weigh up the benefits of an environmentally friendly power source over the cost.
Efficiency can decrease slightly over time, one of the main reasons being dust and insect carcasses on the blades which alters the aerodynamic profile and essentially reduces the lift to drag ratio of the airfoil. Analysis of 3128 wind turbines older than 10 years in Denmark showed that half of the turbines had no decrease, while the other half saw a production decrease of 1.2% per year.[19] Ice accretion on turbine blades has also been found to greatly reduce the efficiency of wind turbines, which is a common challenge in cold climates where in-cloud icing and freezing rain events occur.[20] Vertical turbine designs have much lower efficiency than standard horizontal designs.[21]
Wave power, which captures the energy of ocean surface waves, and tidal power, converting the energy of tides, are two forms of hydropower with future potential; however, they are not yet widely employed commercially. A demonstration project operated by the Ocean Renewable Power Company on the coast of Maine, and connected to the grid, harnesses tidal power from the Bay of Fundy, location of world's highest tidal flow. Ocean thermal energy conversion, which uses the temperature difference between cooler deep and warmer surface waters, has currently no economic feasibility.

The stiffness of composites is determined by the stiffness of fibers and their volume content. Typically, E-glass fibers are used as main reinforcement in the composites. Typically, the glass/epoxy composites for wind blades contain up to 75 weight % glass. This increases the stiffness, tensile and compression strength. A promising source of the composite materials in the future is glass fibers with modified compositions like S-glass, R-glass etc. Some other special glasses developed by Owens Corning are ECRGLAS, Advantex and most recently WindStrand glass fibers. [49]


From 1978 to 1996, the National Renewable Energy Laboratory experimented with producing algae fuel in the "Aquatic Species Program."[112] A self-published article by Michael Briggs, at the University of New Hampshire Biofuels Group, offers estimates for the realistic replacement of all motor vehicle fuel with biofuels by utilizing algae that have a natural oil content greater than 50%, which Briggs suggests can be grown on algae ponds at wastewater treatment plants.[113] This oil-rich algae can then be extracted from the system and processed into biofuels, with the dried remainder further reprocessed to create ethanol. The production of algae to harvest oil for biofuels has not yet been undertaken on a commercial scale, but feasibility studies have been conducted to arrive at the above yield estimate. During the biofuel production process algae actually consumes the carbon dioxide in the air and turns it into oxygen through photosynthesis.[114] In addition to its projected high yield, algaculture— unlike food crop-based biofuels — does not entail a decrease in food production, since it requires neither farmland nor fresh water. Many companies are pursuing algae bio-reactors for various purposes, including scaling up biofuels production to commercial levels.[115][116]
UN Conference on the Human Environment (Stockholm 1972) Brundtlandt Commission Report (1983) Our Common Future (1987) Earth Summit (1992) Rio Declaration on Environment and Development Agenda 21 (1992) Convention on Biological Diversity (1992) ICPD Programme of Action (1994) Earth Charter Lisbon Principles UN Millennium Declaration (2000) Earth Summit 2002 (Rio+10, Johannesburg) United Nations Conference on Sustainable Development (Rio+20, 2012) Sustainable Development Goals

In October 2018, the American Council for an Energy-Efficient Economy (ACEEE) released its annual "State Energy Efficiency Scorecard." The scorecard concluded that states and electric utility companies are continuing to expand energy efficiency measures in order to meet clean energy goals. In 2017, the U.S. spent $6.6 billion in electricity efficiency programs. $1.3 billion was spent on natural gas efficiency. These programs resulted in 27.3 million megawatt hours (MWh) of electricity saved.[160]
“California Invests in ‘By Location’ Distributed Energy Resources” • California leads the US with several pilot projects to reward rooftop solar energy generators and other distributed energy resources in specific locations as an alternative to having utilities meet needs by investing in upgrading their electricity generation networks. [CleanTechnica]
Renewable energy resources exist over wide geographical areas, in contrast to other energy sources, which are concentrated in a limited number of countries. Rapid deployment of renewable energy and energy efficiency is resulting in significant energy security, climate change mitigation, and economic benefits.[8] The results of a recent review of the literature[9] concluded that as greenhouse gas (GHG) emitters begin to be held liable for damages resulting from GHG emissions resulting in climate change, a high value for liability mitigation would provide powerful incentives for deployment of renewable energy technologies. In international public opinion surveys there is strong support for promoting renewable sources such as solar power and wind power.[10] At the national level, at least 30 nations around the world already have renewable energy contributing more than 20 percent of energy supply. National renewable energy markets are projected to continue to grow strongly in the coming decade and beyond.[11] Some places and at least two countries, Iceland and Norway generate all their electricity using renewable energy already, and many other countries have the set a goal to reach 100% renewable energy in the future. For example, in Denmark the government decided to switch the total energy supply (electricity, mobility and heating/cooling) to 100% renewable energy by 2050.[12]
In net metering the price of the electricity produced is the same as the price supplied to the consumer, and the consumer is billed on the difference between production and consumption. Net metering can usually be done with no changes to standard electricity meters, which accurately measure power in both directions and automatically report the difference, and because it allows homeowners and businesses to generate electricity at a different time from consumption, effectively using the grid as a giant storage battery. With net metering, deficits are billed each month while surpluses are rolled over to the following month. Best practices call for perpetual roll over of kWh credits.[97] Excess credits upon termination of service are either lost, or paid for at a rate ranging from wholesale to retail rate or above, as can be excess annual credits. In New Jersey, annual excess credits are paid at the wholesale rate, as are left over credits when a customer terminates service.[98]
×