You should know that we at Solacity love wind turbines! Can’t get enough of ’em. Where the neighbours see life-threatening, blade-shedding, bat-and-bird killing, noise-making contraptions, we see poetry in motion. Kinetic art at its finest; combining form, movement, and function all in one. We could stare at them for hours, while contemplating the meaning of life, the universe, and everything… and have… until the beer ran out. Despite all the information presented here, we are big fans of small wind turbines. This page is about informing you, so you can make a decision based on fact and not marketing hype.

Second-generation technologies include solar heating and cooling, wind power, modern forms of bioenergy and solar photovoltaics. These are now entering markets as a result of research, development and demonstration (RD&D) investments since the 1980s. The initial investment was prompted by energy security concerns linked to the oil crises (1973 and 1979) of the 1970s but the continuing appeal of these renewables is due, at least in part, to environmental benefits. Many of the technologies reflect significant advancements in materials.
Stop getting twisted!! Gold Plated Contacts Heavy 30 amp Per conductor slip ring total 180 amps....Great for even heavy 12 volt environment wind generators as used in our Cat 5 and Freedom II Dual PMA Turbines This rotating connector will be great for the wind generator. The current can be split up in DC applications by using two conductors to cut down on the resistance. If you have application specific questions feel free to ask me before buying. Has 3 mounting holes in collar and long wires for easy installation Shared Specifications Wires 6 Current 0~30A Voltage 600 VDC/VAC Max speed 250RPM Overall diameter 30mm Length 66mm Contact Material Precious Metal:gold-gold Contact Resistance <2mOhm Housing Material Plastics Torque 0.06N.
Artificial photosynthesis uses techniques including nanotechnology to store solar electromagnetic energy in chemical bonds by splitting water to produce hydrogen and then using carbon dioxide to make methanol.[182] Researchers in this field are striving to design molecular mimics of photosynthesis that utilize a wider region of the solar spectrum, employ catalytic systems made from abundant, inexpensive materials that are robust, readily repaired, non-toxic, stable in a variety of environmental conditions and perform more efficiently allowing a greater proportion of photon energy to end up in the storage compounds, i.e., carbohydrates (rather than building and sustaining living cells).[183] However, prominent research faces hurdles, Sun Catalytix a MIT spin-off stopped scaling up their prototype fuel-cell in 2012, because it offers few savings over other ways to make hydrogen from sunlight.[184]
Shi Zhengrong has said that, as of 2012, unsubsidised solar power is already competitive with fossil fuels in India, Hawaii, Italy and Spain. He said "We are at a tipping point. No longer are renewable power sources like solar and wind a luxury of the rich. They are now starting to compete in the real world without subsidies". "Solar power will be able to compete without subsidies against conventional power sources in half the world by 2015".[75]
“[The maps] suggest that our 100 percent renewable energy purchasing goal — which relies on buying surplus renewable energy when it’s sunny and windy, to offset the lack of renewable energy supply in other situations — is an important first step toward achieving a fully carbon-free future,” Michael Terrell, Google’s head of energy markets, wrote in a blog post. “Ultimately, we aspire to source carbon-free energy for our operations in all places, at all times.”

At the end of 2014, worldwide PV capacity reached at least 177,000 megawatts. Photovoltaics grew fastest in China, followed by Japan and the United States, while Germany remains the world's largest overall producer of photovoltaic power, contributing about 7.0 percent to the overall electricity generation. Italy meets 7.9 percent of its electricity demands with photovoltaic power—the highest share worldwide.[119] For 2015, global cumulative capacity is forecasted to increase by more than 50 gigawatts (GW). By 2018, worldwide capacity is projected to reach as much as 430 gigawatts. This corresponds to a tripling within five years.[120] Solar power is forecasted to become the world's largest source of electricity by 2050, with solar photovoltaics and concentrated solar power contributing 16% and 11%, respectively. This requires an increase of installed PV capacity to 4,600 GW, of which more than half is expected to be deployed in China and India.[121]

“If the U.S. continues this kind of thing, I’m afraid the credibility of the number one leader country of the world may be in serious question,” Mr. Ban said. “We must have a global vision. It’s not the American economy. If the world economy is shaken by climate consequences do you think the American economy will be able to survive? We all sink together.”
Going forward, there is hope for the small wind future! Certification programs are under way in various places to provide real turbine performance data. In North America this is being spearheaded by the Small Wind Certification Council, which requires third-party certification of turbine performance in a standardized fashion. Manufacturers will no longer be able to fudge power curves, or specify ‘rated power’ at hurricane-force wind speeds. This will allow you, the consumer, to compare turbines on a much more even footing.
Solar contractors face many decisions when it comes to finding the best solar design. One important consideration is determining whether to use module-level power electronics (microinverters or DC optimizers). Once costly specialty products, module-level power electronics have made great strides in the last decade and are rapidly growing in popularity. And there’s good reason for…

“University of Texas Study Highlights Wind’s Low Cost” • Wind, solar and natural gas have the lowest levelized cost of electricity in the majority of counties across the United States, according to a new report from The University of Texas at Austin’s Energy Institute, part of a series of white papers on the Full Cost of Electricity. [Into the Wind]
There are numerous organizations within the academic, federal, and commercial sectors conducting large scale advanced research in the field of renewable energy. This research spans several areas of focus across the renewable energy spectrum. Most of the research is targeted at improving efficiency and increasing overall energy yields.[157] Multiple federally supported research organizations have focused on renewable energy in recent years. Two of the most prominent of these labs are Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), both of which are funded by the United States Department of Energy and supported by various corporate partners.[158] Sandia has a total budget of $2.4 billion[159] while NREL has a budget of $375 million.[160]

The expansion is thanks largely to innovation on the policy front, which has opened up opportunities in regulated electricity markets. The number of corporate renewable energy deals signed under utility green tariff programs continues to grow, representing around 25 percent of corporate renewables procurement so far this year. At the same time, utilities are incorporating corporate renewables into their long-term planning — and thinking about solutions beyond green tariffs to better meet the needs of existing corporate customers and smaller loads.
UN Conference on the Human Environment (Stockholm 1972) Brundtlandt Commission Report (1983) Our Common Future (1987) Earth Summit (1992) Rio Declaration on Environment and Development Agenda 21 (1992) Convention on Biological Diversity (1992) ICPD Programme of Action (1994) Earth Charter Lisbon Principles UN Millennium Declaration (2000) Earth Summit 2002 (Rio+10, Johannesburg) United Nations Conference on Sustainable Development (Rio+20, 2012) Sustainable Development Goals
Renewable energy technologies are getting cheaper, through technological change and through the benefits of mass production and market competition. A 2011 IEA report said: "A portfolio of renewable energy technologies is becoming cost-competitive in an increasingly broad range of circumstances, in some cases providing investment opportunities without the need for specific economic support," and added that "cost reductions in critical technologies, such as wind and solar, are set to continue."[99]
Modern turbines usually have a small onboard crane for hoisting maintenance tools and minor components. However, large heavy components like generator, gearbox, blades and so on are rarely replaced and a heavy lift external crane is needed in those cases. If the turbine has a difficult access road, a containerized crane can be lifted up by the internal crane to provide heavier lifting.[68]

Besides getting a working product, the one measure you are after as a small wind turbine owner is how much electrical energy it will produce for your location. Hopefully by now you know the annual average wind speed for the height that you are planning to put your turbine at, and you have selected a site with little turbulence. Forget about the manufacturer’s claims; it turns out that the best predictors for turbine energy production are the diameter and average wind speed. Here is an equation that will calculate approximate annual average energy production for a grid-tie horizontal axis turbine of reasonable efficiency:
Other cities won’t have it so easy. Take Atlanta. Residents buy energy from Georgia Power, which is owned by investors. As things stand, Atlantans have no control over how their power is generated, though that may change. In 2019, Georgia Power, by state law, has to update its energy plan. Ted Terry, director of the Georgia chapter of the Sierra Club, says the nonprofit is working with Atlanta officials to incorporate renewables, primarily solar, into the state’s plan. Developing such energy sources on a scale that can power a metro area with 5.8 million people, as in Atlanta, or 7.68 million in the San Francisco Bay Area, or 3.3 million in San Diego, will prove challenging. But it doesn’t seem impossible. In 2015, California set a goal of deriving 50 percent of its energy from renewable sources by 2030. Its three investor-owned utilities—Pacific Gas & Electric, Southern California Edison and San Diego Gas & Electric—are poised to achieve that goal just two years from now, or ten years early.
I ask Gore about the lessons he takes from Georgetown. “I think it’s important to pay attention to a CPA who becomes a mayor and takes an objective look at how he can save money for the citizens of his community, even if it means ignoring ideological presuppositions about fossil energy. Especially when the mayor in question is in the heart of oil and gas country.”
Besides the greening of fossil fuel and nuclear power plants, another option is the distribution and immediate use of power from solely renewable sources. In this set-up energy storage is again not necessary. For example, TREC has proposed to distribute solar power from the Sahara to Europe. Europe can distribute wind and ocean power to the Sahara and other countries. In this way, power is produced at any given time as at any point of the planet as the sun or the wind is up or ocean waves and currents are stirring. This option however is probably not possible in the short-term, as fossil fuel and nuclear power are still the main sources of energy on the mains electricity net and replacing them will not be possible overnight.
“New Wind May Be Cheaper than Old, Reliable Coal” • Wind farms have cost less to build and operate than coal-fired power plants for some time. The trend of lower costs for renewables has crossed a threshold: it is sometimes cheaper to build a brand new wind facility than keep an old coal plant burning, according to Lazard Ltd. [Casper Star-Tribune Online]
Another situation where a small wind turbine can make good sense is in case your province, state, or country has rebates or other incentives that make it cheap to install one (just keep ongoing maintenance and repair cost in mind as well). While we would like to advocate responsible spending of government money, the small wind industry needs many more customers to mature. It takes time and installation numbers for manufacturers to work out the bugs, make better turbines, and make them cheaper.
The first three are active solar systems, which use mechanical or electrical devices that convert the sun's heat or light to another form of usable energy. Passive solar buildings are designed and oriented to collect, store, and distribute the heat energy from sunlight to maintain the comfort of the occupants without the use of moving parts or electronics.
A solar power tower uses an array of tracking reflectors (heliostats) to concentrate light on a central receiver atop a tower. Power towers can achieve higher (thermal-to-electricity conversion) efficiency than linear tracking CSP schemes and better energy storage capability than dish stirling technologies.[14] The PS10 Solar Power Plant and PS20 solar power plant are examples of this technology.