If you can turn a wrench and operate an electric drill, you can build this simple generator in two days: one day for chasing down parts, and one day for assembling the components. The four major components include a vehicle alternator with a built-in voltage regulator, a General Motors (GM) fan and clutch assembly (I used one from a 1988 GM 350 motor), a tower or pole on which to mount the generator (15 feet of used 2-inch tubing cost me $20), and the metal to build a bracket for mounting the generator on the tower or pole. If you’re a Ford guy or a Mopar gal, that’s fine — just make sure your alternator has a built-in voltage regulator. You’ll also need some electrical cable or wires to hook the alternator up to your storage batteries. I used 8-gauge, 3-conductor cable pilfered from the oil patch. (And they said the transition from fossil fuels to renewables would take years. Pfft!)
The waste we generate ends up in landfills, where it decomposes and produces landfill gas made of approximately 50 percent methane. This gas can be captured and used to fuel electric generators. Since large landfills must burn off this gas to reduce the hazards arising from gas buildup, this method of renewable energy is one of the most successful.
Sunforce Wind Generators are primarily used to recharge all types of 12-Volt batteries, including lead-acid automotive batteries, deep-cycle (traction type) batteries, gel-cell batteries, and heavy-duty (stationary type) batteries. When using this wind generator to run appliances on a regular basis, the use of deep-cycle marine batteries is recommended. This type of battery is designed to withstand the frequent charge and discharge cycles associated with wind power use. Attempting to run the wind generator on an open circuit without a battery may cause damage to the generator or connected equipment.
You should know that we at Solacity love wind turbines! Can’t get enough of ’em. Where the neighbours see life-threatening, blade-shedding, bat-and-bird killing, noise-making contraptions, we see poetry in motion. Kinetic art at its finest; combining form, movement, and function all in one. We could stare at them for hours, while contemplating the meaning of life, the universe, and everything… and have… until the beer ran out. Despite all the information presented here, we are big fans of small wind turbines. This page is about informing you, so you can make a decision based on fact and not marketing hype.
The locations with highest annual solar irradiance lie in the arid tropics and subtropics. Deserts lying in low latitudes usually have few clouds, and can receive sunshine for more than ten hours a day.[86][87] These hot deserts form the Global Sun Belt circling the world. This belt consists of extensive swathes of land in Northern Africa, Southern Africa, Southwest Asia, Middle East, and Australia, as well as the much smaller deserts of North and South America.[88] Africa's eastern Sahara Desert, also known as the Libyan Desert, has been observed to be the sunniest place on Earth according to NASA.[89][90]
In the case of a “wind turbine generator”, the wind pushes directly against the blades of the turbine, which converts the linear motion of the wind into the rotary motion necessary to spin the generators rotor and the harder the wind pushes, the more electrical energy can be generated. Then it is important to have a good wind turbine blade design to extract as much energy out of the wind as possible.
Thirty years ago Bergey pioneered the radically-simple “Bergey design” that has proven to provide the best reliability, performance, service life, and value of all of the hundreds of competitive products that have come and gone in that time. With only three moving parts and no scheduled maintenance necessary, the Bergey 10 kW has compiled a service record that no other wind turbine can match. We back it up with the longest warranty in the industry.
Solar power is produced by collecting sunlight and converting it into electricity. This is done by using solar panels, which are large flat panels made up of many individual solar cells. It is most often used in remote locations, although it is becoming more popular in urban areas as well. This page contains articles that explore advances in solar energy technology.

Most installers overrate the available wind resource. The majority of small wind turbine installations underperforms their predictions, often by a wide margin. Since wind speed is the most important parameter for turbine energy production, getting that wrong has large consequences (the power in the wind goes with the cube of the wind speed, so double the wind speed and the power in it is 2 * 2 * 2 = 8x as much). You have to be realistic about your annual average wind speed.
The International Geothermal Association (IGA) has reported that 10,715 MW of geothermal power in 24 countries is online, which is expected to generate 67,246 GWh of electricity in 2010.[131] This represents a 20% increase in geothermal power online capacity since 2005. IGA projects this will grow to 18,500 MW by 2015, due to the large number of projects presently under consideration, often in areas previously assumed to have little exploitable resource.[131]
Similarly, in the United States, the independent National Research Council has noted that "sufficient domestic renewable resources exist to allow renewable electricity to play a significant role in future electricity generation and thus help confront issues related to climate change, energy security, and the escalation of energy costs … Renewable energy is an attractive option because renewable resources available in the United States, taken collectively, can supply significantly greater amounts of electricity than the total current or projected domestic demand."[154]

The oldest solar thermal power plant in the world is the 354 megawatt (MW) SEGS thermal power plant, in California.[109] The Ivanpah Solar Electric Generating System is a solar thermal power project in the California Mojave Desert, 40 miles (64 km) southwest of Las Vegas, with a gross capacity of 377 MW.[110] The 280 MW Solana Generating Station is a solar power plant near Gila Bend, Arizona, about 70 miles (110 km) southwest of Phoenix, completed in 2013. When commissioned it was the largest parabolic trough plant in the world and the first U.S. solar plant with molten salt thermal energy storage.[111]
The primary obstacle that is preventing the large scale implementation of solar powered energy generation is the inefficiency of current solar technology. Currently, photovoltaic (PV) panels only have the ability to convert around 24% of the sunlight that hits them into electricity.[125] At this rate, solar energy still holds many challenges for widespread implementation, but steady progress has been made in reducing manufacturing cost and increasing photovoltaic efficiency. Both Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), have heavily funded solar research programs. The NREL solar program has a budget of around $75 million [126] and develops research projects in the areas of photovoltaic (PV) technology, solar thermal energy, and solar radiation.[127] The budget for Sandia’s solar division is unknown, however it accounts for a significant percentage of the laboratory’s $2.4 billion budget.[128] Several academic programs have focused on solar research in recent years. The Solar Energy Research Center (SERC) at University of North Carolina (UNC) has the sole purpose of developing cost effective solar technology. In 2008, researchers at Massachusetts Institute of Technology (MIT) developed a method to store solar energy by using it to produce hydrogen fuel from water.[129] Such research is targeted at addressing the obstacle that solar development faces of storing energy for use during nighttime hours when the sun is not shining. In February 2012, North Carolina-based Semprius Inc., a solar development company backed by German corporation Siemens, announced that they had developed the world’s most efficient solar panel. The company claims that the prototype converts 33.9% of the sunlight that hits it to electricity, more than double the previous high-end conversion rate.[130] Major projects on artificial photosynthesis or solar fuels are also under way in many developed nations.[131]
Interest in recycling blades varies in different markets and depends on the waste legislation and local economics. A challenge in recycling blades is related to the composite material, which is made of a thermosetting matrix and glass fibers or a combination of glass and carbon fibers. Thermosetting matrix cannot be remolded to form new composites. So the options are either to reuse the blade and the composite material elements as they are found in the blade or to transform the composite material into a new source of material. In Germany, wind turbine blades are commercially recycled as part of an alternative fuel mix for a cement factory.

The US National Renewable Energy Laboratory (NREL), in harmonizing the disparate estimates of life-cycle GHG emissions for solar PV, found that the most critical parameter was the solar insolation of the site: GHG emissions factors for PV solar are inversely proportional to insolation.[125] For a site with insolation of 1700 kWh/m2/year, typical of southern Europe, NREL researchers estimated GHG emissions of 45 gCO2e/kWh. Using the same assumptions, at Phoenix, USA, with insolation of 2400 kWh/m2/year, the GHG emissions factor would be reduced to 32 g of CO2e/kWh.[126]
The blades for the wind generator are repurposed from a vehicle fan clutch. To attach the blades to the alternator, you can weld the fan clutch hub directly to the alternator hub — just make certain the fan is perfectly in line with the alternator shaft. Also, make sure the alternator’s built-in wire plug-ins are located on what will be the bottom of the generator. If you don’t have access to a welder, you can connect the fan clutch to the alternator using the following materials:

“What Changes Will Maine’s New Government Bring to Your Life?” • Swept to sizable majorities in last week’s elections, Maine’s Democrats will be in full control of state government for the first time since 2010. They are likely to look for ways to address a number of pressing issues, one of which is climate change. [Kennebec Journal & Morning Sentinel]
The journal, Renewable Energy, seeks to promote and disseminate knowledge on the various topics and technologies of renewable energy systems and components. The journal aims to serve researchers, engineers, economists, manufacturers, NGOs, associations and societies to help them keep abreast of new developments in their specialist fields and to apply alternative energy solutions to current practices.
Jump up ^ James, Paul; Magee, Liam; Scerri, Andy; Steger, Manfred B. (2015). Urban Sustainability in Theory and Practice:. London: Routledge.; Liam Magee; Andy Scerri; Paul James; Jaes A. Thom; Lin Padgham; Sarah Hickmott; Hepu Deng; Felicity Cahill (2013). "Reframing social sustainability reporting: Towards an engaged approach". Environment, Development and Sustainability. Springer.
Last year, the tech giant matched 100 percent of its annual electricity consumption with renewable energy purchases, and has committed to continue doing so as the company grows. Last week, Google built on the 100 percent concept with the release of Carbon Heat Maps, which show that there are times and places where Google’s electricity profile is not yet fully carbon-free — which is what Google wants to be. 
Another economic measure, closely related to the energy payback time, is the energy returned on energy invested (EROEI) or energy return on investment (EROI),[131] which is the ratio of electricity generated divided by the energy required to build and maintain the equipment. (This is not the same as the economic return on investment (ROI), which varies according to local energy prices, subsidies available and metering techniques.) With expected lifetimes of 30 years,[132] the EROEI of PV systems are in the range of 10 to 30, thus generating enough energy over their lifetimes to reproduce themselves many times (6–31 reproductions) depending on what type of material, balance of system (BOS), and the geographic location of the system.[133]
We harness the earth’s most abundant resources – the strength of the wind, the heat of the sun and the force of water – to power the world’s biggest economies and the most remote communities. Combining onshore and offshore wind, hydro and innovative technologies, GE Renewable Energy has installed more than 400+ gigawatts capacity globally to make the world work better and cleaner.
Climate change and global warming concerns, coupled with high oil prices, peak oil, and increasing government support, are driving increasing renewable energy legislation, incentives and commercialization.[10] New government spending, regulation and policies helped the industry weather the global financial crisis better than many other sectors.[24] According to a 2011 projection by the International Energy Agency, solar power generators may produce most of the world's electricity within 50 years, reducing the emissions of greenhouse gases that harm the environment.[25]

The comments stand in contrast to those made by Trump administration representatives also speaking at the energy summit, which is known as CERAWeek. Rick Perry, the energy secretary, on Wednesday criticized what he described as the “mind-set of the Paris agreement” that he contends supports renewable energy to the exclusion of other energy sources. And he took aim at countries pledging to phase out coal use.


Artificial photosynthesis uses techniques including nanotechnology to store solar electromagnetic energy in chemical bonds by splitting water to produce hydrogen and then using carbon dioxide to make methanol.[182] Researchers in this field are striving to design molecular mimics of photosynthesis that utilize a wider region of the solar spectrum, employ catalytic systems made from abundant, inexpensive materials that are robust, readily repaired, non-toxic, stable in a variety of environmental conditions and perform more efficiently allowing a greater proportion of photon energy to end up in the storage compounds, i.e., carbohydrates (rather than building and sustaining living cells).[183] However, prominent research faces hurdles, Sun Catalytix a MIT spin-off stopped scaling up their prototype fuel-cell in 2012, because it offers few savings over other ways to make hydrogen from sunlight.[184]
The solar thermal power industry is growing rapidly with 1.3 GW under construction in 2012 and more planned. Spain is the epicenter of solar thermal power development with 873 MW under construction, and a further 271 MW under development.[112] In the United States, 5,600 MW of solar thermal power projects have been announced.[113] Several power plants have been constructed in the Mojave Desert, Southwestern United States. The Ivanpah Solar Power Facility being the most recent. In developing countries, three World Bank projects for integrated solar thermal/combined-cycle gas-turbine power plants in Egypt, Mexico, and Morocco have been approved.[114]
Free electricity isnt all you get from a new home wind Generator, as soon as your system is up, you have improved your home value by atleast an equal amount of the investment. Your green energy home is more likely to sell compared to others with no home generation or emergency power system. Think about it. Look at homes for sale.. Can any of them generate their own free electricity, how many can compete with such a solid green energy capability like your home wind Generator delivers. Its also an attention getter and will bring people to see what its about if you ever need to sell, your home has a dramatic edge and a higher resale value.
A typical house usually requires a home wind turbine with a 5 kW generating capacity to meet all its energy requirements. A turbine that offers this much power would have to be around 13 to 18 feet in diameter and positioned in an area where strong winds often pass through. There are also plenty of smaller, cheaper turbines, but these variants produce less power and are less reliable than their more expensive counterparts.
Since 2013 the world's highest-situated wind turbine was made and installed by WindAid and is located at the base of the Pastoruri Glacier in Peru at 4,877 meters (16,001 ft) above sea level.[94] The site uses the WindAid 2.5 kW wind generator to supply power to a small rural community of micro entrepreneurs who cater to the tourists who come to the Pastoruri glacier.[95]
“California Invests in ‘By Location’ Distributed Energy Resources” • California leads the US with several pilot projects to reward rooftop solar energy generators and other distributed energy resources in specific locations as an alternative to having utilities meet needs by investing in upgrading their electricity generation networks. [CleanTechnica]
Renewable energy projects in many developing countries have demonstrated that renewable energy can directly contribute to poverty reduction by providing the energy needed for creating businesses and employment. Renewable energy technologies can also make indirect contributions to alleviating poverty by providing energy for cooking, space heating, and lighting. Renewable energy can also contribute to education, by providing electricity to schools.[140]
How accurate are these numbers? This is the energy production a good horizontal-axis wind turbine can reach, if installed at the perfect site and height. These are the upper limit though, if your turbine produces anywhere near the number predicted by this table you should be doing your happy-dance! Most small wind turbine installations underperform significantly, in fact, the average seems to be about half of the predicted energy production (and many do not even reach that). There can be many reasons for the performance shortfall; poor site selection,  with more turbulent air than expected often has much to do with it. The reports in the ‘real world’ section following below illustrate this point. Many small wind turbines do not reach 30% overall efficiency, some are close to 0% (this is no joke!), so these numbers have only one direction to go. For off-grid battery charging wind turbines you should deduct 20 – 30% of the predicted numbers, due to the lower efficiency of a turbine tied to batteries, and the losses involved in charging batteries.
This is a wind map of the lands south of the border (the US) for 30 meters (100′) height, a very common height for small wind turbine installations. Anything green or yellow is not a good wind resource location. Here in Canada the distribution is similar, in that the good places are in the mid-west and very close to the shores of the great lakes and oceans.
The locations with highest annual solar irradiance lie in the arid tropics and subtropics. Deserts lying in low latitudes usually have few clouds, and can receive sunshine for more than ten hours a day.[86][87] These hot deserts form the Global Sun Belt circling the world. This belt consists of extensive swathes of land in Northern Africa, Southern Africa, Southwest Asia, Middle East, and Australia, as well as the much smaller deserts of North and South America.[88] Africa's eastern Sahara Desert, also known as the Libyan Desert, has been observed to be the sunniest place on Earth according to NASA.[89][90]
×