America is embracing renewables, slowly. In 2016, Massachusetts passed a law promoting a huge investment in wind and hydropower; the first megawatt is expected to hit the grid in 2020. Early this year New York State announced plans to spend 12 years building the infrastructure for a $6 billion offshore wind power industry. Hawaii has pledged to be powered entirely by renewable energy—in 2045. Atlanta’s goal is 2035 and San Francisco’s is 2030. Typically, plans to convert to sustainable energy stretch on for decades.
Between mounting concerns about the environment and the rising cost of energy, there has never been a better time for Corpus Christi residents to invest in solar energy for their homes. Because these sources of energy are completely renewable, they make only a tiny impact on the environment, and they require almost no upkeep once they are installed. At Bodine-Scott, we offer a wide range of solar energy products to help our customers save money and protect the local environment from pollution.
Several large-scale energy storage suggestions for the grid have been done. Worldwide there is over 100 GW of Pumped-storage hydroelectricity. This improves efficiency and decreases energy losses but a conversion to an energy storing mains electricity grid is a very costly solution. Some costs could potentially be reduced by making use of energy storage equipment the consumer buys and not the state. An example is batteries in electric cars that would double as an energy buffer for the electricity grid. However besides the cost, setting-up such a system would still be a very complicated and difficult procedure. Also, energy storage apparatus' as car batteries are also built with materials that pose a threat to the environment (e.g. Lithium). The combined production of batteries for such a large part of the population would still have environmental concerns. Besides car batteries however, other Grid energy storage projects make use of less polluting energy carriers (e.g. compressed air tanks and flywheel energy storage).
Ross is now an energy celebrity, sitting on conference panels and lending Georgetown’s cachet to environmental-film screenings. And it isn’t only conservatives who buttonhole him. As if to prove the adage that no good deed goes unpunished, he also hears from people who worry about the impact of renewables. “They’ll come up to me and say with a straight face, ‘You know what? Those windmills are killing birds,’ ” Ross says. “ ‘Oh, really? I didn’t know that was a big interest of yours, but you know what the number-one killer of birds is in this country? Domestic house cats. Kill about four billion birds a year. You know what the number-two killer of birds is? Buildings they fly into. So you’re suggesting that we outlaw house cats and buildings?’ They go, ‘That's not exactly what I meant.’”
Julia Pyper is a Senior Editor at Greentech Media covering clean energy policy, the solar industry, grid edge technologies and electric mobility. She previously reported for E&E Publishing, and has covered clean energy and climate change issues across the U.S. and abroad, including in Haiti, Israel and the Maldives. Julia holds degrees from McGill and Columbia Universities. Find her on Twitter @JMPyper.
Solar energy is the cleanest and most abundant renewable energy source available, and the U.S. has some of the richest solar resources in the world. Solar technologies can harness this energy for a variety of uses, including generating electricity, providing light or a comfortable interior environment, and heating water for domestic, commercial, or industrial use.
In the case of crystalline silicon modules, the solder material, that joins together the copper strings of the cells, contains about 36 percent of lead (Pb). Moreover, the paste used for screen printing front and back contacts contains traces of Pb and sometimes Cd as well. It is estimated that about 1,000 metric tonnes of Pb have been used for 100 gigawatts of c-Si solar modules. However, there is no fundamental need for lead in the solder alloy.[141]
Mr. Trump has said the Paris agreement is a bad deal for the United States and that the country will no longer work toward its pledge of cutting emissions at least 26 percent below 2005 levels by 2025 or contribute money to the climate fund. Former President Barack Obama promised $3 billion over four years and delivered $1 billion before leaving office.
Materials for wind turbine parts other than the rotor blades (including the rotor hub, gearbox, frame, and tower) are largely composed of steel. Modern turbines use a couple of tons of copper for generators, cables, and such.[52] Smaller wind turbines have begun incorporating more aluminum based alloys into these components in an effort to make the turbines lighter and more efficient, and may continue to be used increasingly if fatigue and strength properties can be improved. Prestressed concrete has been increasingly used for the material of the tower, but still requires much reinforcing steel to meet the strength requirement of the turbine. Additionally, step-up gearboxes are being increasingly replaced with variable speed generators, increasing the demand for magnetic materials in wind turbines.[46] In particular, this would require an increased supply of the rare earth metal neodymium.
Through collaboration, smaller buyers can benefit from economies of scale, while larger buyers can continue to see cost benefits while achieving their renewable energy goals. Aggregation allows companies to procure in a mutually beneficial way with relatively little give and take. For that reason, RMI believes this marks “the beginning of a trend,” Haley said.  
Permanent magnets for wind turbine generators contain rare earth metals such as Nd, Pr, Tb, and Dy. Systems that use magnetic direct drive turbines require higher amounts of rare metals. Therefore, an increase in wind production would increase the demand for these resources. It is estimated that the additional demand for Nd in 2035 may be 4,000 to 18,000 tons and Dy could see an increase of 200 to 1200 tons. These values represent a quarter to half of current production levels. However, since technologies are developing rapidly, driven by supply and price of materials these estimated levels are extremely uncertain.[55]
The energy it calculates is in kWh per year, the diameter of the wind turbine rotor is in meters, the wind speed is annual average for the turbine hub height in m/s. The equation uses a Weibull wind distribution with a factor of K=2, which is about right for inland sites. An overall efficiency of the turbine, from wind to electrical grid, of 30% is used. That is a reasonable, real-world efficiency number. Here is a table that shows how average annual wind speed, turbine size, and annual energy production relate:
Solar power is the conversion of energy from sunlight into electricity, either directly using photovoltaics (PV), indirectly using concentrated solar power, or a combination. Concentrated solar power systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. Photovoltaic cells convert light into an electric current using the photovoltaic effect.[1]