Index of solar energy articles List of concentrating solar thermal power companies List of photovoltaics companies List of photovoltaic power stations List of pioneering solar buildings List of rooftop photovoltaic installations List of solar car teams List of solar powered products List of solar thermal power stations People associated with solar power
A heat pump is a device that provides heat energy from a source of heat to a destination called a "heat sink". Heat pumps are designed to move thermal energy opposite to the direction of spontaneous heat flow by absorbing heat from a cold space and releasing it to a warmer one. A solar-assisted heat pump represents the integration of a heat pump and thermal solar panels in a single integrated system. Typically these two technologies are used separately (or only placing them in parallel) to produce hot water.[180] In this system the solar thermal panel performs the function of the low temperature heat source and the heat produced is used to feed the heat pump's evaporator.[181] The goal of this system is to get high COP and then produce energy in a more efficient and less expensive way.

In the mid-1990s, development of both, residential and commercial rooftop solar as well as utility-scale photovoltaic power stations, began to accelerate again due to supply issues with oil and natural gas, global warming concerns, and the improving economic position of PV relative to other energy technologies.[34] In the early 2000s, the adoption of feed-in tariffs—a policy mechanism, that gives renewables priority on the grid and defines a fixed price for the generated electricity—led to a high level of investment security and to a soaring number of PV deployments in Europe.
At GE, product evolution is at our core, and we are continuously working to develop the next generation of wind energy. Beginning in 2002 with one wind turbine model, we now offer a full suite of turbines created for a variety of wind environments. We offer increased value to customers with proven performance, reliability, and availability. Our portfolio of turbines feature rated capacities from 1.7 MW to 5.3 MW (Onshore) and 6 MW to 12 MW (Offshore), we are uniquely suited to meet the needs of a broad range of wind regimes. 

Index of solar energy articles List of concentrating solar thermal power companies List of photovoltaics companies List of photovoltaic power stations List of pioneering solar buildings List of rooftop photovoltaic installations List of solar car teams List of solar powered products List of solar thermal power stations People associated with solar power

I mounted this turbine in my back yard on the recommended schedule 40 galvanized pipe at about 20' high. My location does not get consistent wind from one direction which is the only way this turbine will spin. Even in gusty conditions of 15-20 mph the turbine rarely spins more than a few revolutions and has not produced any measurable power after a month. If you don't have a steady wind from one direction this turbine will not produce any power at all. You would be better off with a vertical turbine or one with larger blade surface area. The specs say 8 mph start up, that means a consistent 8 mph wind from a single direction. For the money you would be better off with a single 80 watt solar panel.
Energy harnessed by wind turbines is intermittent, and is not a "dispatchable" source of power; its availability is based on whether the wind is blowing, not whether electricity is needed. Turbines can be placed on ridges or bluffs to maximize the access of wind they have, but this also limits the locations where they can be placed.[72] In this way, wind energy is not a particularly reliable source of energy. However, it can form part of the energy mix, which also includes power from other sources. Notably, the relative available output from wind and solar sources is often inversely proportional (balancing)[citation needed]. Technology is also being developed to store excess energy, which can then make up for any deficits in supplies.
Renewable energy (and energy efficiency) are no longer niche sectors that are promoted only by governments and environmentalists. The increased levels of investment and the fact that much of the capital is coming from more conventional financial actors suggest that sustainable energy options are now becoming mainstream.[63] An example of this would be The Alliance to Save Energy's Project with Stahl Consolidated Manufacturing, (Huntsville, Alabama, USA) (StahlCon 7), a patented generator shaft designed to reduce emissions within existing power generating systems, granted publishing rights to the Alliance in 2007.

Wind turbines are manufactured in a wide range of vertical and horizontal axis. The smallest turbines are used for applications such as battery charging for auxiliary power for boats or caravans or to power traffic warning signs. Slightly larger turbines can be used for making contributions to a domestic power supply while selling unused power back to the utility supplier via the electrical grid. Arrays of large turbines, known as wind farms, are becoming an increasingly important source of intermittent renewable energy and are used by many countries as part of a strategy to reduce their reliance on fossil fuels. One assessment claimed that, as of 2009, wind had the "lowest relative greenhouse gas emissions, the least water consumption demands and... the most favourable social impacts" compared to photovoltaic, hydro, geothermal, coal and gas.[1]
As the section above shows, anything under 5 m/s annual average wind speed is not going to be worth-while if you want any economic benefit out of a wind turbine. Even with government incentives, you would be better off with solar for most places. Let us take this a bit further, and assume your backyard is pretty windy, a full 6 m/s (13.4 mph) annual average wind speed at 100′ height. You get a 6 kW wind turbine installed, and shell out $50,000 for that privilege. If the installer did her job properly, the turbine is spinning in nice, clean, laminar air, and it will produce around 13,000 kWh per year. You are the kind of person that wins the lottery on a regular basis, marries a beauty queen (or king), and has kids that all go to ivy-league universities; your wind turbine never breaks and you do not have to shell out a single buck for maintenance over 20 years. Now your turbine has produced around 260,000 kWh of electricity, which works out to 19.2 cents per kWh in cost. Maybe you pay more than for electricity and it is worth it, but your are likely not getting rich, and any repairs and maintenance will drive that price up in a hurry.
Above this rated speed, the wind loads on the rotor blades will be approaching the maximum strength of the electrical machine, and the generator will be producing its maximum or rated power output as the rated wind speed window will have been reached. If the wind speed continues to increase, the wind turbine generator would stop at its cut-out point to prevent mechanical and electrical damage, resulting in zero electrical generation. The application of a brake to stop the generator for damaging itself can be either a mechanical governor or electrical speed sensor.
Throughout the country, more than half of all U.S. electricity customers now have an option to purchase some type of green power product from a retail electricity provider. Roughly one-quarter of the nation's utilities offer green power programs to customers, and voluntary retail sales of renewable energy in the United States totaled more than 12 billion kilowatt-hours in 2006, a 40% increase over the previous year.
Features:Low wind speed start-up(2m/s), high wind power utilization, light,cute, low vibration.Human-friendly design,easy to install and maintain.Blades using reinforced glass fiber, helped with optimized structure and aerodynamic shape, it enhanced wind power coefficient and power generating capacity.Using patented permanent magnet generator and special stator, it effectively reduces torque resistance and guarantees the stability.The 24V DC 400W wind turbine is an eco.
Single small turbines below 100 kilowatts are used for homes, telecommunications dishes, or water pumping. Small turbines are sometimes used in connection with diesel generators, batteries, and photovoltaic systems. These systems are called hybrid wind systems and are typically used in remote, off-grid locations where a connection to the utility grid is not available.
There are numerous organizations within the academic, federal, and commercial sectors conducting large scale advanced research in the field of sustainable energy. This research spans several areas of focus across the sustainable energy spectrum. Most of the research is targeted at improving efficiency and increasing overall energy yields.[94] Multiple federally supported research organizations have focused on sustainable energy in recent years. Two of the most prominent of these labs are Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), both of which are funded by the United States Department of Energy and supported by various corporate partners.[95] Sandia has a total budget of $2.4 billion [96] while NREL has a budget of $375 million.[97]
Wind-generated electricity met nearly 4% of global electricity demand in 2015, with nearly 63 GW of new wind power capacity installed. Wind energy was the leading source of new capacity in Europe, the US and Canada, and the second largest in China. In Denmark, wind energy met more than 40% of its electricity demand while Ireland, Portugal and Spain each met nearly 20%.
In 2004, natural gas accounted for about 19 percent of the U.S. electricity mix. Use of natural gas is projected to increase dramatically in the next two decades if we continue on our current path, but supplies are limited and imports are increasing. Our growing reliance on natural gas combined with limited supplies makes this fuel subject to price spikes, which can have a significant impact on consumer energy costs. In addition, though natural gas is much cleaner than coal or oil, it does produce global warming emissions when burned. So, while the use of natural gas serves as a good transition to a cleaner future, it is not the ultimate solution.
The terms wind energy or wind power describe the process by which the wind is used to generate mechanical power or electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. This mechanical power can be used for specific tasks (such as grinding grain or pumping water) or a generator can convert this mechanical power into electricity.
Within emerging economies, Brazil comes second to China in terms of clean energy investments. Supported by strong energy policies, Brazil has one of the world’s highest biomass and small-hydro power capacities and is poised for significant growth in wind energy investment. The cumulative investment potential in Brazil from 2010 to 2020 is projected as $67 billion.[155]

Biofuels include a wide range of fuels which are derived from biomass. The term covers solid, liquid, and gaseous fuels.[73] Liquid biofuels include bioalcohols, such as bioethanol, and oils, such as biodiesel. Gaseous biofuels include biogas, landfill gas and synthetic gas. Bioethanol is an alcohol made by fermenting the sugar components of plant materials and it is made mostly from sugar and starch crops. These include maize, sugarcane and, more recently, sweet sorghum. The latter crop is particularly suitable for growing in dryland conditions, and is being investigated by International Crops Research Institute for the Semi-Arid Tropics for its potential to provide fuel, along with food and animal feed, in arid parts of Asia and Africa.[74]

A report by the United States Geological Survey estimated the projected materials requirement in order to fulfill the US commitment to supplying 20% of its electricity from wind power by 2030. They did not address requirements for small turbines or offshore turbines since those were not widely deployed in 2008, when the study was created. They found that there are increases in common materials such as cast iron, steel and concrete that represent 2–3% of the material consumption in 2008. Between 110,000 and 115,000 metric tons of fiber glass would be required annually, equivalent to 14% of consumption in 2008. They did not see a high increase in demand for rare metals compared to available supply, however rare metals that are also being used for other technologies such as batteries which are increasing its global demand need to be taken into account. Land, whbich might not be considered a material, is an important resource in deploying wind technologies. Reaching the 2030 goal would require 50,000 square kilometers of onshore land area and 11,000 square kilometers of offshore. This is not considered a problem in the US due to its vast area and the ability to use land for farming and grazing. A greater limitation for the technology would be the variability and transmission infrastructure to areas of higher demand.[54]
America is embracing renewables, slowly. In 2016, Massachusetts passed a law promoting a huge investment in wind and hydropower; the first megawatt is expected to hit the grid in 2020. Early this year New York State announced plans to spend 12 years building the infrastructure for a $6 billion offshore wind power industry. Hawaii has pledged to be powered entirely by renewable energy—in 2045. Atlanta’s goal is 2035 and San Francisco’s is 2030. Typically, plans to convert to sustainable energy stretch on for decades.

We now know that the electrical generator provides a means of energy conversion between the mechanical torque generated by the rotor blades, called the prime mover, and some electrical load. The mechanical connection of the wind turbine generator to the rotor blades is made through a main shaft which can be either a simple direct drive, or by using a gearbox to increase or decrease the generator speed relative to the rotational speed of the blades.

Wind turbines need wind to produce energy. That message seems lost, not only on most small wind turbine owners, but also on many manufacturers and installers of said devices. One of the world’s largest manufacturers of small wind turbines, located in the USA (now bankrupt by the way, though their turbines are still sold), markets their flag-ship machine with a 12 meter (36 feet) tower. Their dealers are trained to tell you it will produce 60% of your electricity bill. If you are one of those that is convinced the earth is flat, this is the turbine for you!
A turbine that produces around 5 kW worth of energy can produce approximately 8,000 kWh per year, assuming there are decent winds to power it. Given ideal conditions, you will be able to recoup your investment in three to five years, depending on your monthly energy consumption and other related factors. If, however, your property doesn’t get enough wind then it may take a little more time to recover your initial investment.
What is a small wind turbine? Anything under, say, 10 meters rotor diameter (30 feet) is well within the “small wind” category. That works out to wind turbines with a rated power up to around 20 kW (at 11 m/s, or 25 mph). For larger wind turbines the manufacturers are usually a little more honest, and more money is available to do a good site analysis. The information in this article is generic: The same applies to all the other brands and models, be they of the HAWT (Horizontal Axis Wind Turbine) or VAWT (Vertical Axis Wind Turbine) persuasion.
In October 2018, the American Council for an Energy-Efficient Economy (ACEEE) released its annual "State Energy Efficiency Scorecard." The scorecard concluded that states and electric utility companies are continuing to expand energy efficiency measures in order to meet clean energy goals. In 2017, the U.S. spent $6.6 billion in electricity efficiency programs. $1.3 billion was spent on natural gas efficiency. These programs resulted in 27.3 million megawatt hours (MWh) of electricity saved.[160]
The International Renewable Energy Agency (IRENA) is an intergovernmental organization for promoting the adoption of renewable energy worldwide. It aims to provide concrete policy advice and facilitate capacity building and technology transfer. IRENA was formed on 26 January 2009, by 75 countries signing the charter of IRENA.[145] As of March 2010, IRENA has 143 member states who all are considered as founding members, of which 14 have also ratified the statute.[146]
These high strength magnets are usually made from rare earth materials such as neodymium iron (NdFe), or samarium cobalt (SmCo) eliminating the need for the field windings to provide a constant magnetic field, leading to a simpler, more rugged construction. Wound field windings have the advantage of matching their magnetism (and therefore power) with the varying wind speed but require an external energy source to generate the required magnetic field.

In 2010, the International Energy Agency predicted that global solar PV capacity could reach 3,000 GW or 11% of projected global electricity generation by 2050—enough to generate 4,500 TWh of electricity.[40] Four years later, in 2014, the agency projected that, under its "high renewables" scenario, solar power could supply 27% of global electricity generation by 2050 (16% from PV and 11% from CSP).[2]