I wouldn’t consider myself a creative type.  Never painted a picture, never felt confident in color or fabric choices.  But I did get a real creativity boost living off-grid in northern New Mexico, raising children on one income in a home with caught water, gardening at 7600 feet in a climate that gets REALLY cold.  We built a house called an earthship from recycled materials and earth. 
“Climate Change Helped Make California a Tinder Box for its Record-Setting Wildfires” • Camp Fire, which is devastating Sierra Nevada foothills, has become the most destructive wildfire in California’s history. By the evening of November 10, it had scorched 105,000 acres of land and killed 23 people, with more than 100 people still unaccounted for. [Quartz]
The combination of wind and solar PV has the advantage that the two sources complement each other because the peak operating times for each system occur at different times of the day and year. The power generation of such solar hybrid power systems is therefore more constant and fluctuates less than each of the two component subsystems.[21] Solar power is seasonal, particularly in northern/southern climates, away from the equator, suggesting a need for long term seasonal storage in a medium such as hydrogen or pumped hydroelectric.[117] The Institute for Solar Energy Supply Technology of the University of Kassel pilot-tested a combined power plant linking solar, wind, biogas and hydrostorage to provide load-following power from renewable sources.[118]

Then the faster the coil of wire rotates, the greater the rate of change by which the magnetic flux is cut by the coil and the greater is the induced emf within the coil. Similarly, if the magnetic field is made stronger, the induced emf will increase for the same rotational speed. Thus: emf ∝ Φn. Where: “Φ” is the magnetic-field flux and “n” is the speed of rotation. Also, the polarity of the generated voltage depends on the direction of the magnetic lines of flux and the direction of movement of the conductor.


Climate change and global warming concerns, coupled with high oil prices, peak oil, and increasing government support, are driving increasing renewable energy legislation, incentives and commercialization.[10] New government spending, regulation and policies helped the industry weather the global financial crisis better than many other sectors.[24] According to a 2011 projection by the International Energy Agency, solar power generators may produce most of the world's electricity within 50 years, reducing the emissions of greenhouse gases that harm the environment.[25]
Some renewable power sources now cost somewhat more than conventional power, because the market for renewable energy is not fully developed and renewables have received fewer subsidies than fossil and nuclear fuels. Also, the damage to the environment and human health—otherwise known as externalities—caused by fossil fuels and nuclear power is not included in electricity prices. Renewable energy needs your support to overcome these barriers and become less expensive in the future. Look into becoming a green power consumer today!
“If the U.S. continues this kind of thing, I’m afraid the credibility of the number one leader country of the world may be in serious question,” Mr. Ban said. “We must have a global vision. It’s not the American economy. If the world economy is shaken by climate consequences do you think the American economy will be able to survive? We all sink together.”

Biomass, biogas and biofuels are burned to produce heat/power and in doing so harm the environment. Pollutants such as sulphurous oxides (SOx), nitrous oxides (NOx), and particulate matter (PM) are produced from this combustion; the World Health Organisation estimates that 7 million premature deaths are caused each year by air pollution.[102] Biomass combustion is a major contributor.[102][103][104]
Large three-bladed horizontal-axis wind turbines (HAWT), with the blades upwind of the tower produce the overwhelming majority of windpower in the world today. These turbines have the main rotor shaft and electrical generator at the top of a tower, and must be pointed into the wind. Small turbines are pointed by a simple wind vane, while large turbines generally use a wind sensor coupled with a yaw system. Most have a gearbox, which turns the slow rotation of the blades into a quicker rotation that is more suitable to drive an electrical generator.[25] Some turbines use a different type of generator suited to slower rotational speed input. These don't need a gearbox, and are called direct-drive, meaning they couple the rotor directly to the generator with no gearbox in between. While permanent magnet direct-drive generators can be more costly due to the rare earth materials required, these gearless turbines are sometimes preferred over gearbox generators because they "eliminate the gear-speed increaser, which is susceptible to significant accumulated fatigue torque loading, related reliability issues, and maintenance costs."[26]

I contacted many different solar installation companies looking for someone who operates in my area (150 miles west of San Antonio) and Soleil Energy Solutions was the only one willing to make the trip out here. Fortunately for me, they’re also a great company to work with.I was able to deal directly with the owners of the company, Abbas and Jennifer, and their customer service is top notch. They had a customized assessment the day after I contacted them which included the size of system best suited for my home and energy consumption, the cost of the system with all the rebates and tax rebates I qualified for, and the amount of money I’d save on my light bill. They also offered me multiple financing options and guided me through that whole process. I had a ton of questions throughout the entire process and whether I emailed them or texted them after business hours, I got a response right away.They took care of everything for me including securing the rebates and city permits so I didn’t really have to do anything. The crew they had doing the actual solar panel and backup battery installation are all veterans, which I really appreciated because of their attention to detail. They were very courteous and they made sure the panels added to the curb appeal of my house as far as their placement.I’m really excited to finally have a solar panel system for my home and I’d definitely recommend Soleil to anyone who’s interested in switching to solar too.... read more
You should know that we at Solacity love wind turbines! Can’t get enough of ’em. Where the neighbours see life-threatening, blade-shedding, bat-and-bird killing, noise-making contraptions, we see poetry in motion. Kinetic art at its finest; combining form, movement, and function all in one. We could stare at them for hours, while contemplating the meaning of life, the universe, and everything… and have… until the beer ran out. Despite all the information presented here, we are big fans of small wind turbines. This page is about informing you, so you can make a decision based on fact and not marketing hype.
I wouldn’t consider myself a creative type.  Never painted a picture, never felt confident in color or fabric choices.  But I did get a real creativity boost living off-grid in northern New Mexico, raising children on one income in a home with caught water, gardening at 7600 feet in a climate that gets REALLY cold.  We built a house called an earthship from recycled materials and earth. 
flywheel energy storage, pumped-storage hydroelectricity is more usable in stationary applications (e.g. to power homes and offices). In household power systems, conversion of energy can also be done to reduce smell. For example, organic matter such as cow dung and spoilable organic matter can be converted to biochar. To eliminate emissions, carbon capture and storage is then used.
One- to 10-kW turbines can be used in applications such as pumping water. Wind energy has been used for centuries to pump water and grind grain. Although mechanical windmills still provide a sensible, low-cost option for pumping water in low-wind areas, farmers and ranchers are finding that wind-electric pumping is more versatile and they can pump twice the volume for the same initial investment. In addition, mechanical windmills must be placed directly above the well, which may not take advantage of available wind resources. Wind-electric pumping systems can be placed where the wind resource is the best and connected to the pump motor with an electric cable. However, in areas with a low wind resource, mechanical windmills can provide more efficient water pumping.
As of 2018, American electric utility companies are planning new or extra renewable energy investments. These investments are particularly aimed at solar energy, thanks to the Tax Cuts and Jobs Act of 2017 being signed into law. The law retained incentives for renewable energy development. Utility companies are taking advantage of the federal solar investment tax credit before it permanently goes down to 10% after 2021. According to the March 28 S&P Global Market Intelligence report summary, "NextEra Energy Inc., Duke Energy Corp., and Dominion Energy Inc.’s utilities are among a number of companies in the sector contemplating significant solar investments in the near-term. Other companies, including Xcel Energy Inc. and Alliant Energy Corp., are undertaking large wind projects in the near-term, but are considering ramping up solar investments in the coming years."[96]
From 1978 to 1996, the National Renewable Energy Laboratory experimented with producing algae fuel in the "Aquatic Species Program."[112] A self-published article by Michael Briggs, at the University of New Hampshire Biofuels Group, offers estimates for the realistic replacement of all motor vehicle fuel with biofuels by utilizing algae that have a natural oil content greater than 50%, which Briggs suggests can be grown on algae ponds at wastewater treatment plants.[113] This oil-rich algae can then be extracted from the system and processed into biofuels, with the dried remainder further reprocessed to create ethanol. The production of algae to harvest oil for biofuels has not yet been undertaken on a commercial scale, but feasibility studies have been conducted to arrive at the above yield estimate. During the biofuel production process algae actually consumes the carbon dioxide in the air and turns it into oxygen through photosynthesis.[114] In addition to its projected high yield, algaculture— unlike food crop-based biofuels — does not entail a decrease in food production, since it requires neither farmland nor fresh water. Many companies are pursuing algae bio-reactors for various purposes, including scaling up biofuels production to commercial levels.[115][116]
A more reliable grid: Even if we're not ready to completely transition to renewable energy sources of power, supplementing the grid with green electricity helps increase grid reliability. You can also produce your own green electricity by installing solar panels or wind turbines at home. If the grid goes down for some reason, you may be able to keep your power on using your on-site renewable power generation system.

In Denmark by 1900, there were about 2500 windmills for mechanical loads such as pumps and mills, producing an estimated combined peak power of about 30 (MW). The largest machines were on 24-meter (79 ft) towers with four-bladed 23-meter (75 ft) diameter rotors. By 1908 there were 72 wind-driven electric generators operating in the United States from 5 kW to 25 kW. Around the time of World War I, American windmill makers were producing 100,000 farm windmills each year, mostly for water-pumping.[9]
Plant energy is produced by crops specifically grown for use as fuel that offer high biomass output per hectare with low input energy. Some examples of these plants are wheat, which typically yield 7.5–8 tonnes of grain per hectare, and straw, which typically yield 3.5–5 tonnes per hectare in the UK.[68] The grain can be used for liquid transportation fuels while the straw can be burned to produce heat or electricity. Plant biomass can also be degraded from cellulose to glucose through a series of chemical treatments, and the resulting sugar can then be used as a first generation biofuel.
Among sources of renewable energy, hydroelectric plants have the advantages of being long-lived—many existing plants have operated for more than 100 years. Also, hydroelectric plants are clean and have few emissions. Criticisms directed at large-scale hydroelectric plants include: dislocation of people living where the reservoirs are planned, and release of significant amounts of carbon dioxide during construction and flooding of the reservoir.[16]
Markets for second-generation technologies are strong and growing, but only in a few countries. The challenge is to broaden the market base for continued growth worldwide. Strategic deployment in one country not only reduces technology costs for users there, but also for those in other countries, contributing to overall cost reductions and performance improvement.

Usually however, renewable energy is derived from the mains electricity grid. This means that energy storage is mostly not used, as the mains electricity grid is organised to produce the exact amount of energy being consumed at that particular moment. Energy production on the mains electricity grid is always set up as a combination of (large-scale) renewable energy plants, as well as other power plants as fossil-fuel power plants and nuclear power. This combination however, which is essential for this type of energy supply (as e.g. wind turbines, solar power plants etc.) can only produce when the wind blows and the sun shines. This is also one of the main drawbacks of the system as fossil fuel powerplants are polluting and are a main cause of global warming (nuclear power being an exception). Although fossil fuel power plants too can be made emissionless (through carbon capture and storage), as well as renewable (if the plants are converted to e.g. biomass) the best solution is still to phase out the latter power plants over time. Nuclear power plants too can be more or less eliminated from their problem of nuclear waste through the use of nuclear reprocessing and newer plants as fast breeder and nuclear fusion plants.
A 2014-published life-cycle analysis of land use for various sources of electricity concluded that the large-scale implementation of solar and wind potentially reduces pollution-related environmental impacts. The study found that the land-use footprint, given in square meter-years per megawatt-hour (m2a/MWh), was lowest for wind, natural gas and rooftop PV, with 0.26, 0.49 and 0.59, respectively, and followed by utility-scale solar PV with 7.9. For CSP, the footprint was 9 and 14, using parabolic troughs and solar towers, respectively. The largest footprint had coal-fired power plants with 18 m2a/MWh.[146]
The Instapark SP-50W solar panel offers you a The Instapark SP-50W solar panel offers you a quiet clean while carbon-free alternative. Capable of converting virtually unlimited solar energy into clean green most importantly free electricity this solar panel is made of high efficiency mono-crystalline solar cells embedded in transparent vinyl acetate behind tempered glass with heavy back sheet ...  More + Product Details Close

The Sunforce 44444 400 Watt Wind Generator uses wind to generate power and run your appliances and electronics, helping to produce electricity at cabins and worksites far from existing power lines. Constructed from lightweight, weatherproof cast aluminum, this generator charges 12-volt batteries for large power demands in both land and marine environments. With a maximum power up to 400 watts, this device features a fully integrated regulator that automatically shuts down when the batteries are completely charged.
Solar water heating makes an important contribution to renewable heat in many countries, most notably in China, which now has 70% of the global total (180 GWth). Most of these systems are installed on multi-family apartment buildings and meet a portion of the hot water needs of an estimated 50–60 million households in China. Worldwide, total installed solar water heating systems meet a portion of the water heating needs of over 70 million households. The use of biomass for heating continues to grow as well. In Sweden, national use of biomass energy has surpassed that of oil. Direct geothermal for heating is also growing rapidly.[28] The newest addition to Heating is from Geothermal Heat Pumps which provide both heating and cooling, and also flatten the electric demand curve and are thus an increasing national priority[29][30] (see also Renewable thermal energy).
Bioethanol is an alcohol made by fermentation, mostly from carbohydrates produced in sugar or starch crops such as corn, sugarcane, or sweet sorghum. Cellulosic biomass, derived from non-food sources such as trees and grasses is also being developed as a feedstock for ethanol production. Ethanol can be used as a fuel for vehicles in its pure form, but it is usually used as a gasoline additive to increase octane and improve vehicle emissions. Bioethanol is widely used in the USA and in Brazil. Biodiesel can be used as a fuel for vehicles in its pure form, but it is usually used as a diesel additive to reduce levels of particulates, carbon monoxide, and hydrocarbons from diesel-powered vehicles. Biodiesel is produced from oils or fats using transesterification and is the most common biofuel in Europe.
Conventional hydroelectricity works very well in conjunction with solar power, water can be held back or released from a reservoir behind a dam as required. Where a suitable river is not available, pumped-storage hydroelectricity uses solar power to pump water to a high reservoir on sunny days then the energy is recovered at night and in bad weather by releasing water via a hydroelectric plant to a low reservoir where the cycle can begin again.[109] However, this cycle can lose 20% of the energy to round trip inefficiencies, this plus the construction costs add to the expense of implementing high levels of solar power.
The most significant barriers to the widespread implementation of large-scale renewable energy and low carbon energy strategies are primarily political and not technological. According to the 2013 Post Carbon Pathways report, which reviewed many international studies, the key roadblocks are: climate change denial, the fossil fuels lobby, political inaction, unsustainable energy consumption, outdated energy infrastructure, and financial constraints.[155]
The energy in the wind goes up with the cube of the wind speed. Double the wind speed and you have 2 * 2 * 2 = 8 times the energy! Sit back and let the full weight of that sink in for a moment: It means that even a small difference in annual average wind speed will make a BIG difference in how much your wind turbine will produce: Putting that turbine in a place that has just 10% more wind will net you 1.1 * 1.1 * 1.1 = 1.33 = a full 33% more energy!
It is unfortunate to see how well marketing for small wind turbines is working: I often see people post questions on forums, where they are looking for a wind turbine “with a low cut-in wind speed”. Depending on whom you ask, the cut-in wind speed is either the wind speed where the turbine starts turning, or the wind speed where it starts to produce some power. For most wind turbines it is around 2.5 – 3.5 m/s (5.5 – 8 mph), and it is an utterly meaningless parameter.
The journal also welcomes papers on other related topics provided that such topics are within the context of the broader multi-disciplinary scope of Renewable Energy. It should be noted, however, that papers are within scope only if they are concerned with power generation and that the power is generated in a renewable or sustainable way. For instance, a paper concerning development and characterisation of a material for use in a renewable energy system, without any measure of the energy that this new material will convert, would be out of scope.
With Georgetown emerging as a brave new model for a renewable city, it makes sense to ask if others can achieve the same magical balance of more power, less pollution and lower costs. In fact, cities ranging from Orlando to St. Louis to San Francisco to Portland, Oregon, have pledged to run entirely on renewable energy. Those places are much larger than Georgetown, of course, and no one would expect misty Portland to power a light bulb for long with solar energy, which is crucial to Georgetown’s success. But beyond its modest size, abundant sunshine and archetype-busting mayor, Georgetown has another edge, one that’s connected to a cherished Lone Star ideal: freedom.

This discussion is mainly about factory-made grid-tie wind turbines. The off-grid crowd has an entirely different set of decisions and goals. The main ones are that for off-grid use economic viability in comparison with the electrical grid is not an issue, and a wind turbine can make up for the loss of sunlight (and PV electricity) in the winter months. For the DIY group there are several good turbine designs available; Hugh Piggott and the two Dans have written books that outline this step-by-step. Building your own turbine can be a great hobby, and some of the topics touched below apply (such as proper site selection), but this discussion is not about those. The decisions involved in making your own turbine, and the cost basis, have little overlap with a the process of having an installer put a factory-made turbine in your backyard.
Besides getting a working product, the one measure you are after as a small wind turbine owner is how much electrical energy it will produce for your location. Hopefully by now you know the annual average wind speed for the height that you are planning to put your turbine at, and you have selected a site with little turbulence. Forget about the manufacturer’s claims; it turns out that the best predictors for turbine energy production are the diameter and average wind speed. Here is an equation that will calculate approximate annual average energy production for a grid-tie horizontal axis turbine of reasonable efficiency:
Since having the Peimar Solar Panels installed and listening to the advice of the owner I have saved a lot of money on my electric bill. Texas Solar Integrated did the work as quickly and efficiently as promised. If the panels look dirty, since I live around cement plants, I just get my high pressure water hose and spray them off. Thank you to this company and the installers. The owner or another contractor in the office is always ready to answer your questions before and after installation.... read more

Solar energy, radiant light and heat from the sun, is harnessed using a range of ever-evolving technologies such as solar heating, photovoltaics, concentrated solar power (CSP), concentrator photovoltaics (CPV), solar architecture and artificial photosynthesis.[49][50] Solar technologies are broadly characterized as either passive solar or active solar depending on the way they capture, convert and distribute solar energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light dispersing properties, and designing spaces that naturally circulate air. Active solar technologies encompass solar thermal energy, using solar collectors for heating, and solar power, converting sunlight into electricity either directly using photovoltaics (PV), or indirectly using concentrated solar power (CSP).
It is hard to beat the advantages of solar: No moving parts. Warranties of 25 years are common for PV modules. No maintenance, other than the occasional hosing-off if you live in a dusty place. The installed price of a 6 kW wind turbine on a good height tower is about $50,000 (and we are not even counting the money you are going to sink into maintenance of that wind turbine). At the time of this writing, half that money will buy you about 7 kW of installed solar panels. In our not-so-sunny Ottawa location those solar modules will produce around 8,000 kWh of electrical energy per average year, and they will do that for 30 years or more.
Our home wind turbene systems are Wind/Solar Hybrid, and are qualified for government tax crdedits of 30%. So, for your investment made in these systems the IRS credits you back 30% within one year of purchase. You get 30% back from the IRS. So, basically the government will pay for almost 1/3 of your investment made in your new home wind Generator energy system. This includes all installation costs and expenses and is a real nice start on your investment payback.

Solar panels converts the sun's light in to usable solar energy using N-type and P-type semiconductor material.  When sunlight is absorbed by these materials, the solar energy knocks electrons loose from their atoms, allowing the electrons to flow through the material to produce electricity. This process of converting light (photons) to electricity (voltage) is called the photovoltaic (PV) effect.  Currently solar panels convert most of the visible light spectrum and about half of the ultraviolet and infrared light spectrum to usable solar energy.
A heat pump is a device that provides heat energy from a source of heat to a destination called a "heat sink". Heat pumps are designed to move thermal energy opposite to the direction of spontaneous heat flow by absorbing heat from a cold space and releasing it to a warmer one. A solar-assisted heat pump represents the integration of a heat pump and thermal solar panels in a single integrated system. Typically these two technologies are used separately (or only placing them in parallel) to produce hot water.[180] In this system the solar thermal panel performs the function of the low temperature heat source and the heat produced is used to feed the heat pump's evaporator.[181] The goal of this system is to get high COP and then produce energy in a more efficient and less expensive way.
Taken together, the generation and distribution of electric power in the United States is an astonishingly complex undertaking. Utilities may generate their own power or buy it from other utilities; that power travels over a grid of transformers and high- and low-voltage lines to your house. Ownership of utilities varies from nonprofits to cooperatives to for-profits. Federal regulators ultimately oversee the grid. Amazingly, when you flip a switch, electricity is there.
Currently, flying manned electric aircraft are mostly experimental demonstrators, though many small unmanned aerial vehicles are powered by batteries. Electrically powered model aircraft have been flown since the 1970s, with one report in 1957.[186][187] The first man-carrying electrically powered flights were made in 1973.[188] Between 2015–2016, a manned, solar-powered plane, Solar Impulse 2, completed a circumnavigation of the Earth.[189]
Outline of energy Energy Units Conservation of energy Energetics Energy transformation Energy condition Energy transition Energy level Energy system Mass Negative mass Mass–energy equivalence Power Thermodynamics Quantum thermodynamics Laws of thermodynamics Thermodynamic system Thermodynamic state Thermodynamic potential Thermodynamic free energy Irreversible process Thermal reservoir Heat transfer Heat capacity Volume (thermodynamics) Thermodynamic equilibrium Thermal equilibrium Thermodynamic temperature Isolated system Entropy Free entropy Entropic force Negentropy Work Exergy Enthalpy
Thorium is a fissionable material used in thorium-based nuclear power. The thorium fuel cycle claims several potential advantages over a uranium fuel cycle, including greater abundance, superior physical and nuclear properties, better resistance to nuclear weapons proliferation[121][122][123] and reduced plutonium and actinide production.[123] Therefore, it is sometimes referred as sustainable.[124]
Hydro-electricity and geothermal electricity produced at favourable sites are now the cheapest way to generate electricity. Renewable energy costs continue to drop, and the levelised cost of electricity (LCOE) is declining for wind power, solar photovoltaic (PV), concentrated solar power (CSP) and some biomass technologies.[100] Renewable energy is also the most economic solution for new grid-connected capacity in areas with good resources. As the cost of renewable power falls, the scope of economically viable applications increases. Renewable technologies are now often the most economic solution for new generating capacity. Where "oil-fired generation is the predominant power generation source (e.g. on islands, off-grid and in some countries) a lower-cost renewable solution almost always exists today".[100] A series of studies by the US National Renewable Energy Laboratory modeled the "grid in the Western US under a number of different scenarios where intermittent renewables accounted for 33 percent of the total power." In the models, inefficiencies in cycling the fossil fuel plants to compensate for the variation in solar and wind energy resulted in an additional cost of "between $0.47 and $1.28 to each MegaWatt hour generated"; however, the savings in the cost of the fuels saved "adds up to $7 billion, meaning the added costs are, at most, two percent of the savings."[101]
In terms of ocean energy, another third-generation technology, Portugal has the world's first commercial wave farm, the Aguçadora Wave Park, under construction in 2007. The farm will initially use three Pelamis P-750 machines generating 2.25 MW.[44][45] and costs are put at 8.5 million euro. Subject to successful operation, a further 70 million euro is likely to be invested before 2009 on a further 28 machines to generate 525 MW.[46] Funding for a wave farm in Scotland was announced in February, 2007 by the Scottish Executive, at a cost of over 4 million pounds, as part of a £13 million funding packages for ocean power in Scotland. The farm will be the world's largest with a capacity of 3 MW generated by four Pelamis machines.[47] (see also Wave farm).

Most horizontal axis turbines have their rotors upwind of its supporting tower. Downwind machines have been built, because they don't need an additional mechanism for keeping them in line with the wind. In high winds, the blades can also be allowed to bend which reduces their swept area and thus their wind resistance. Despite these advantages, upwind designs are preferred, because the change in loading from the wind as each blade passes behind the supporting tower can cause damage to the turbine.


If you can turn a wrench and operate an electric drill, you can build this simple generator in two days: one day for chasing down parts, and one day for assembling the components. The four major components include a vehicle alternator with a built-in voltage regulator, a General Motors (GM) fan and clutch assembly (I used one from a 1988 GM 350 motor), a tower or pole on which to mount the generator (15 feet of used 2-inch tubing cost me $20), and the metal to build a bracket for mounting the generator on the tower or pole. If you’re a Ford guy or a Mopar gal, that’s fine — just make sure your alternator has a built-in voltage regulator. You’ll also need some electrical cable or wires to hook the alternator up to your storage batteries. I used 8-gauge, 3-conductor cable pilfered from the oil patch. (And they said the transition from fossil fuels to renewables would take years. Pfft!)
Modern turbines usually have a small onboard crane for hoisting maintenance tools and minor components. However, large heavy components like generator, gearbox, blades and so on are rarely replaced and a heavy lift external crane is needed in those cases. If the turbine has a difficult access road, a containerized crane can be lifted up by the internal crane to provide heavier lifting.[68]
The Vestas V164 has a rated capacity of 8 MW,[79] later upgraded to 9.5 MW.[80][81] The wind turbine has an overall height of 220 m (722 ft), a diameter of 164 m (538 ft), is for offshore use, and is the world's largest-capacity wind turbine since its introduction in 2014. The conventional drive train consist of a main gearbox and a medium speed PM generator. Prototype installed in 2014 at the National Test Center Denmark nearby Østerild. Series production began end of 2015.
Research is also undertaken in this field of artificial photosynthesis. It involves the use of nanotechnology to store solar electromagnetic energy in chemical bonds, by splitting water to produce hydrogen fuel or then combining with carbon dioxide to make biopolymers such as methanol. Many large national and regional research projects on artificial photosynthesis are now trying to develop techniques integrating improved light capture, quantum coherence methods of electron transfer and cheap catalytic materials that operate under a variety of atmospheric conditions.[119] Senior researchers in the field have made the public policy case for a Global Project on Artificial Photosynthesis to address critical energy security and environmental sustainability issues.[120]
×