Wind-generated electricity met nearly 4% of global electricity demand in 2015, with nearly 63 GW of new wind power capacity installed. Wind energy was the leading source of new capacity in Europe, the US and Canada, and the second largest in China. In Denmark, wind energy met more than 40% of its electricity demand while Ireland, Portugal and Spain each met nearly 20%.

Biomass briquettes are increasingly being used in the developing world as an alternative to charcoal. The technique involves the conversion of almost any plant matter into compressed briquettes that typically have about 70% the calorific value of charcoal. There are relatively few examples of large-scale briquette production. One exception is in North Kivu, in eastern Democratic Republic of Congo, where forest clearance for charcoal production is considered to be the biggest threat to mountain gorilla habitat. The staff of Virunga National Park have successfully trained and equipped over 3500 people to produce biomass briquettes, thereby replacing charcoal produced illegally inside the national park, and creating significant employment for people living in extreme poverty in conflict-affected areas.[18]
On most horizontal wind turbine farms, a spacing of about 6–10 times the rotor diameter is often upheld. However, for large wind farms distances of about 15 rotor diameters should be more economical, taking into account typical wind turbine and land costs. This conclusion has been reached by research[62] conducted by Charles Meneveau of the Johns Hopkins University,[63] and Johan Meyers of Leuven University in Belgium, based on computer simulations[64] that take into account the detailed interactions among wind turbines (wakes) as well as with the entire turbulent atmospheric boundary layer.
Renewable energy resources and significant opportunities for energy efficiency exist over wide geographical areas, in contrast to other energy sources, which are concentrated in a limited number of countries. Rapid deployment of renewable energy and energy efficiency, and technological diversification of energy sources, would result in significant energy security and economic benefits.[8] It would also reduce environmental pollution such as air pollution caused by burning of fossil fuels and improve public health, reduce premature mortalities due to pollution and save associated health costs that amount to several hundred billion dollars annually only in the United States.[21] Renewable energy sources, that derive their energy from the sun, either directly or indirectly, such as hydro and wind, are expected to be capable of supplying humanity energy for almost another 1 billion years, at which point the predicted increase in heat from the sun is expected to make the surface of the earth too hot for liquid water to exist.[22][23]
These residential renewable energy plans are sourced from 100% wind power generation. In addition, a Green Power plan lets you lock in a secure, fixed energy rate with the same key benefits as Champion Energy’s traditional electricity plans. This is an ideal choice for customers looking for ways to preserve the environment, conserve natural resources and promote the growth of renewable energy infrastructure.

The journal also welcomes papers on other related topics provided that such topics are within the context of the broader multi-disciplinary scope of Renewable Energy. It should be noted, however, that papers are within scope only if they are concerned with power generation and that the power is generated in a renewable or sustainable way. For instance, a paper concerning development and characterisation of a material for use in a renewable energy system, without any measure of the energy that this new material will convert, would be out of scope.
The heat that is used for geothermal energy can be from deep within the Earth, all the way down to Earth's core – 4,000 miles (6,400 km) down. At the core, temperatures may reach over 9,000 °F (5,000 °C). Heat conducts from the core to surrounding rock. Extremely high temperature and pressure cause some rock to melt, which is commonly known as magma. Magma convects upward since it is lighter than the solid rock. This magma then heats rock and water in the crust, sometimes up to 700 °F (371 °C).[58]
Hydro-electricity and geothermal electricity produced at favourable sites are now the cheapest way to generate electricity. Renewable energy costs continue to drop, and the levelised cost of electricity (LCOE) is declining for wind power, solar photovoltaic (PV), concentrated solar power (CSP) and some biomass technologies.[100] Renewable energy is also the most economic solution for new grid-connected capacity in areas with good resources. As the cost of renewable power falls, the scope of economically viable applications increases. Renewable technologies are now often the most economic solution for new generating capacity. Where "oil-fired generation is the predominant power generation source (e.g. on islands, off-grid and in some countries) a lower-cost renewable solution almost always exists today".[100] A series of studies by the US National Renewable Energy Laboratory modeled the "grid in the Western US under a number of different scenarios where intermittent renewables accounted for 33 percent of the total power." In the models, inefficiencies in cycling the fossil fuel plants to compensate for the variation in solar and wind energy resulted in an additional cost of "between $0.47 and $1.28 to each MegaWatt hour generated"; however, the savings in the cost of the fuels saved "adds up to $7 billion, meaning the added costs are, at most, two percent of the savings."[101]
Going forward, there is hope for the small wind future! Certification programs are under way in various places to provide real turbine performance data. In North America this is being spearheaded by the Small Wind Certification Council, which requires third-party certification of turbine performance in a standardized fashion. Manufacturers will no longer be able to fudge power curves, or specify ‘rated power’ at hurricane-force wind speeds. This will allow you, the consumer, to compare turbines on a much more even footing.
Innovative programs around the country now make it possible for all environmentally conscious energy consumers to support renewable energy directly by participating in the "green" power market. The willingness to pay for the benefits of increasing our renewable energy supplies can be tapped within any market structure and by any size or type of energy consumer.
12 Month Financing: For a limited time, purchase $599 or more using the Amazon.com Store Card and pay no interest for 12 months on your entire order if paid in full in 12 months. Interest will be charged to your account from the purchase date if the promotional balance is not paid in full within 12 months. Minimum monthly payments required. Subject to credit approval. Apply now.
Reliance on rare earth minerals for components has risked expense and price volatility as China has been main producer of rare earth minerals (96% in 2009) and had been reducing its export quotas of these materials.[56] In recent years, however, other producers have increased production of rare earth minerals and China has removed its reduced export quota on rare earths leading to an increased supply and decreased cost of rare earth minerals, increasing the viability of the implementation of variable speed generators in wind turbines on a large scale.[57]

Max daily output is at 1.4KW. It also works when there is only the wind power, getting single power. Closed maintenance-free ball bearings ensure not only lightness, high efficiency and low wear. The series of wind turbine with high-quality aluminum alloy and stainless steel parts, the machine is not only light weight, small size, shape is also better than similar products.

Then I pick up a Home Power Magazine, or a Backwoods Home, or a Mother Earth News.  I read the letters to the editor and I think, These are my people!  This is my tribe—the tribe of folks striving for independence of thought and lifestyle, who are creative in their choice of building materials, who try to make responsible choices about how their choices affect the environment they live in.


Conventional hydroelectricity works very well in conjunction with solar power, water can be held back or released from a reservoir behind a dam as required. Where a suitable river is not available, pumped-storage hydroelectricity uses solar power to pump water to a high reservoir on sunny days then the energy is recovered at night and in bad weather by releasing water via a hydroelectric plant to a low reservoir where the cycle can begin again.[109] However, this cycle can lose 20% of the energy to round trip inefficiencies, this plus the construction costs add to the expense of implementing high levels of solar power.
Concentrator photovoltaics (CPV) systems employ sunlight concentrated onto photovoltaic surfaces for the purpose of electrical power production. Contrary to conventional photovoltaic systems, it uses lenses and curved mirrors to focus sunlight onto small, but highly efficient, multi-junction solar cells. Solar concentrators of all varieties may be used, and these are often mounted on a solar tracker in order to keep the focal point upon the cell as the sun moves across the sky.[147] Luminescent solar concentrators (when combined with a PV-solar cell) can also be regarded as a CPV system. Concentrated photovoltaics are useful as they can improve efficiency of PV-solar panels drastically.[148]

Space-Based Solar Power Satellites seek to overcome the problems of storage and provide civilization-scale power that is clean, constant, and global. Japan and China have active national programs aimed at commercial scale Space-Based Solar Power (SBSP), and both nation's hope to orbit demonstrations in the 2030s. The China Academy of Space Technology (CAST) won the 2015 International SunSat Design Competition with this video of their Multi-Rotary Joint design. Proponents of SBSP claim that Space-Based Solar Power would be clean, constant, and global, and could scale to meet all planetary energy demand.[56] A recent multi-agency industry proposal (echoing the 2008 Pentagon recommendation) won the SECDEF/SECSTATE/USAID Director D3 (Diplomacy, Development, Defense) Innovation Challenge [57] with the following pitch and vision video.[132] Northrop Grumman is funding CALTECH with $17.5 million[133] for an ultra lightweight design.[134] Keith Henson posted a video of a "bootstrapping" approach.
I wouldn’t consider myself a creative type.  Never painted a picture, never felt confident in color or fabric choices.  But I did get a real creativity boost living off-grid in northern New Mexico, raising children on one income in a home with caught water, gardening at 7600 feet in a climate that gets REALLY cold.  We built a house called an earthship from recycled materials and earth. 
The picture the company is using to sell this on Amazon is not of the turbine they are selling, but a picture of the best-selling South-West Windpower Air X turbine and I bought this item believing it to be this turbine. I also have one of these turbines which has run faultlessly now for 7 years. I am very disappointed with the Sunforce and often feel like throwing into the sea! It's a piece of junk!!

Commercial concentrated solar power plants were first developed in the 1980s. As the cost of solar electricity has fallen, the number of grid-connected solar PV systems has grown into the millions and utility-scale solar power stations with hundreds of megawatts are being built. Solar PV is rapidly becoming an inexpensive, low-carbon technology to harness renewable energy from the Sun.
Meanwhile, we enjoy life grid intertied here in northern California. Our daughters and their families are nearby using their independent living skills to make their own homes.  One daughter has designed and sold 300 off-grid or gridtie solar electric systems since the first of the year.  The other is baking bread today and figuring out what to do with the multitude of tomatillos, squash and eggplant that are spilling out of our garden.  I’m so proud of my tribe!

Commercial concentrating solar power (CSP) plants, also called "solar thermal power stations", were first developed in the 1980s. The 377 MW Ivanpah Solar Power Facility, located in California's Mojave Desert, is the world’s largest solar thermal power plant project. Other large CSP plants include the Solnova Solar Power Station (150 MW), the Andasol solar power station (150 MW), and Extresol Solar Power Station (150 MW), all in Spain. The principal advantage of CSP is the ability to efficiently add thermal storage, allowing the dispatching of electricity over up to a 24-hour period. Since peak electricity demand typically occurs at about 5 pm, many CSP power plants use 3 to 5 hours of thermal storage.[65]

×