Above this rated speed, the wind loads on the rotor blades will be approaching the maximum strength of the electrical machine, and the generator will be producing its maximum or rated power output as the rated wind speed window will have been reached. If the wind speed continues to increase, the wind turbine generator would stop at its cut-out point to prevent mechanical and electrical damage, resulting in zero electrical generation. The application of a brake to stop the generator for damaging itself can be either a mechanical governor or electrical speed sensor.
Green Pricing is an optional utility service for customers who want to help expand the production and distribution of renewable energy technologies. With green pricing, you do not have to change your electricity provider. Instead, customers choose to pay a premium on their electricity bill to cover the extra cost of purchasing clean, sustainable energy. As of March 2006, more than 600 utilities, electricity providers in 36 states offer a green pricing option.
Since the 1970s, Brazil has had an ethanol fuel program which has allowed the country to become the world's second largest producer of ethanol (after the United States) and the world's largest exporter.[125] Brazil's ethanol fuel program uses modern equipment and cheap sugarcane as feedstock, and the residual cane-waste (bagasse) is used to produce heat and power.[126] There are no longer light vehicles in Brazil running on pure gasoline. By the end of 2008 there were 35,000 filling stations throughout Brazil with at least one ethanol pump.[127] Unfortunately, Operation Car Wash has seriously eroded public trust in oil companies and has implicated several high ranking Brazilian officials.

Cleaner air and water: Burning fossil fuels releases greenhouse gases (GHG) into the atmosphere. GHG contribute to global climate change, rising sea levels and unpredictable weather patterns that can be costly in terms of human and economic losses. Burning fossil fuels also releases contaminants in to the air and water near the power generation source. Alternative energy sources can produce the same electricity in a greener way. You can shrink your carbon footprint, help curb climate change and reduce air and water pollution when you choose renewable electricity.
“Climate Change Helped Make California a Tinder Box for its Record-Setting Wildfires” • Camp Fire, which is devastating Sierra Nevada foothills, has become the most destructive wildfire in California’s history. By the evening of November 10, it had scorched 105,000 acres of land and killed 23 people, with more than 100 people still unaccounted for. [Quartz]
Wind power first appeared in Europe during the Middle Ages. The first historical records of their use in England date to the 11th or 12th centuries and there are reports of German crusaders taking their windmill-making skills to Syria around 1190.[6] By the 14th century, Dutch windmills were in use to drain areas of the Rhine delta. Advanced wind turbines were described by Croatian inventor Fausto Veranzio. In his book Machinae Novae (1595) he described vertical axis wind turbines with curved or V-shaped blades.
Our latest innovation in the Industrial Internet era, The Digital Wind Farm, is making our turbines smarter and more connected than ever before. A dynamic, connected and adaptable wind energy ecosystem, the Digital Wind Farm pairs our newest turbines with a digital infrastructure, allowing customers to connect, monitor, predict and optimize unit and site performance.
A Wind Turbine Generator is what makes your electricity by converting mechanical energy into electrical energy. Lets be clear here, they do not create energy or produce more electrical energy than the amount of mechanical energy being used to spin the rotor blades. The greater the “load”, or electrical demand placed on the generator, the more mechanical force is required to turn the rotor. This is why generators come in different sizes and produce differing amounts of electricity.
In 2007, the world's first turbine to create commercial amounts of energy using tidal power was installed in the narrows of Strangford Lough in Ireland. The 1.2 MW underwater tidal electricity generator takes advantage of the fast tidal flow in the lough which can be up to 4m/s. Although the generator is powerful enough to power up to a thousand homes, the turbine has a minimal environmental impact, as it is almost entirely submerged, and the rotors turn slowly enough that they pose no danger to wildlife.[48][49]
Dale Ross, the mayor of Georgetown, Texas, has a big smile, a big handshake and a big personality. In last year’s election, he won big, with 72 percent of the vote. The key to his success? “Without being too self-reflective,” he says, “I just like people.” He’s a Republican, and his priorities are party staples: go light on regulation, be tough on crime, keep taxes low. But the thing that is winning him international renown is straight out of the liberal playbook—green power. Thanks to his (big) advocacy, Georgetown (pop. 67,000) last year became the largest city in the United States to be powered entirely by renewable energy.
Green Energy Corp’s™ Microgrid as a Service (MaaS) package is a cloud based, subscription service enabling third party developers to utilize GreenBus® and Green Energy Corp expertise in financing, building and deploying microgrids. Included in the MaaS package is the microgrid toolset comprised of software, design and engineering packages, equipment recommendations, construction methods, operations and maintenance support, and financial instruments all delivered from a hosted environment.
In the case of a “wind turbine generator”, the wind pushes directly against the blades of the turbine, which converts the linear motion of the wind into the rotary motion necessary to spin the generators rotor and the harder the wind pushes, the more electrical energy can be generated. Then it is important to have a good wind turbine blade design to extract as much energy out of the wind as possible.
We harness the earth’s most abundant resources – the strength of the wind, the heat of the sun and the force of water – to power the world’s biggest economies and the most remote communities. Combining onshore and offshore wind, hydro and innovative technologies, GE Renewable Energy has installed more than 400+ gigawatts capacity globally to make the world work better and cleaner.
There are numerous organizations within the academic, federal, and commercial sectors conducting large scale advanced research in the field of sustainable energy. This research spans several areas of focus across the sustainable energy spectrum. Most of the research is targeted at improving efficiency and increasing overall energy yields.[94] Multiple federally supported research organizations have focused on sustainable energy in recent years. Two of the most prominent of these labs are Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), both of which are funded by the United States Department of Energy and supported by various corporate partners.[95] Sandia has a total budget of $2.4 billion [96] while NREL has a budget of $375 million.[97]
Thorium is a fissionable material used in thorium-based nuclear power. The thorium fuel cycle claims several potential advantages over a uranium fuel cycle, including greater abundance, superior physical and nuclear properties, better resistance to nuclear weapons proliferation[121][122][123] and reduced plutonium and actinide production.[123] Therefore, it is sometimes referred as sustainable.[124]
Solar power is produced by collecting sunlight and converting it into electricity. This is done by using solar panels, which are large flat panels made up of many individual solar cells. It is most often used in remote locations, although it is becoming more popular in urban areas as well. This page contains articles that explore advances in solar energy technology.
A photovoltaic system converts light into electrical direct current (DC) by taking advantage of the photoelectric effect.[51] Solar PV has turned into a multi-billion, fast-growing industry, continues to improve its cost-effectiveness, and has the most potential of any renewable technologies together with CSP.[52][53] Concentrated solar power (CSP) systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. Commercial concentrated solar power plants were first developed in the 1980s. CSP-Stirling has by far the highest efficiency among all solar energy technologies.
Between maintenance and repairs, it would greatly help and keep your cost down if you can do some of the work yourself: Being able to safely tilt the turbine tower up or down will save you money. Understanding how the turbine works, how to stop it safely, how to trouble-shoot at least the minor issues can keep you in the black. We understand that installing a wind turbine is not for everyone. In fact, towers are dangerous, and for a good installation the devil is in the details. An experienced installer can make a real difference in putting up a turbine that will work better, and be more reliable over time. We really encourage you to have a professional installer to do the initial installation. However, throwing up your hands and calling your installer for routine maintenance, or every time there is a minor issue, will likely make you an unhappy wind turbine owner (even if it is your installer’s dream).
So how do wind turbines make electricity? Simply stated, a wind turbine works the opposite of a fan. Instead of using electricity to make wind, like a fan, wind turbines use wind to make electricity. The wind turns the blades, which spin a shaft, which connects to a generator and makes electricity. View the wind turbine animation to see how a wind turbine works or take a look inside.
The stator is the “stationary” (hence its name) part of the machine and can have either a set of electrical windings producing an electromagnet or a set of permanent magnets within its design. The rotor is the part of the machine that “rotates”. Again, the rotor can have output coils that rotate or permanent magnets. Generally, generators and alternators used for wind turbine generators are defined by how they make generate their magnetism, either electromagnets or permanent magnets.

While the material cost is significantly higher for all-glass fiber blades than for hybrid glass/carbon fiber blades, there is a potential for tremendous savings in manufacturing costs when labor price is considered. Utilizing carbon fiber enables for simpler designs that use less raw material. The chief manufacturing process in blade fabrication is the layering of plies. By reducing the number of layers of plies, as is enabled by thinner blade design, the cost of labor may be decreased, and in some cases, equate to the cost of labor for glass fiber blades.[51]
“Hurricane-Broken Air Power Base Has an Alternative to Rebuild for Resilience” • Rebuilding the hurricane-wrecked Tyndall Air Force Base in Florida will come with a massive price tag, but experts say it offers a chance to make the base more resilient to the effects of extreme weather. Hurricane Michael hit Tyndall as a Category 4 storm. [Infosurhoy]
Our home wind turbene systems are Wind/Solar Hybrid, and are qualified for government tax crdedits of 30%. So, for your investment made in these systems the IRS credits you back 30% within one year of purchase. You get 30% back from the IRS. So, basically the government will pay for almost 1/3 of your investment made in your new home wind Generator energy system. This includes all installation costs and expenses and is a real nice start on your investment payback.
^ Jump up to: a b c d Alsema, E.A.; Wild – Scholten, M.J. de; Fthenakis, V.M. Environmental impacts of PV electricity generation – a critical comparison of energy supply options Archived 6 March 2012 at the Wayback Machine. ECN, September 2006; 7p. Presented at the 21st European Photovoltaic Solar Energy Conference and Exhibition, Dresden, Germany, 4–8 September 2006.
The windwheel of Hero of Alexandria (10 AD – 70 AD) marks one of the first recorded instances of wind powering a machine in history.[2][3] However, the first known practical wind power plants were built in Sistan, an Eastern province of Persia (now Iran), from the 7th century. These "Panemone" were vertical axle windmills, which had long vertical drive shafts with rectangular blades.[4] Made of six to twelve sails covered in reed matting or cloth material, these windmills were used to grind grain or draw up water, and were used in the gristmilling and sugarcane industries.[5]
According to a 2011 projection by the International Energy Agency, solar power generators may produce most of the world's electricity within 50 years, reducing the emissions of greenhouse gases that harm the environment. Cedric Philibert, senior analyst in the renewable energy division at the IEA said: "Photovoltaic and solar-thermal plants may meet most of the world's demand for electricity by 2060 – and half of all energy needs – with wind, hydropower and biomass plants supplying much of the remaining generation". "Photovoltaic and concentrated solar power together can become the major source of electricity", Philibert said.[25]

A 1.5 (MW) wind turbine of a type frequently seen in the United States has a tower 80 meters (260 ft) high. The rotor assembly (blades and hub) weighs 22,000 kilograms (48,000 lb). The nacelle, which contains the generator, weighs 52,000 kilograms (115,000 lb). The concrete base for the tower is constructed using 26,000 kilograms (58,000 lb) reinforcing steel and contains 190 cubic meters (250 cu yd) of concrete. The base is 15 meters (50 ft) in diameter and 2.4 meters (8 ft) thick near the center.[43]
As of 2018, American electric utility companies are planning new or extra renewable energy investments. These investments are particularly aimed at solar energy, thanks to the Tax Cuts and Jobs Act of 2017 being signed into law. The law retained incentives for renewable energy development. Utility companies are taking advantage of the federal solar investment tax credit before it permanently goes down to 10% after 2021. According to the March 28 S&P Global Market Intelligence report summary, "NextEra Energy Inc., Duke Energy Corp., and Dominion Energy Inc.’s utilities are among a number of companies in the sector contemplating significant solar investments in the near-term. Other companies, including Xcel Energy Inc. and Alliant Energy Corp., are undertaking large wind projects in the near-term, but are considering ramping up solar investments in the coming years."[96]
With Georgetown emerging as a brave new model for a renewable city, it makes sense to ask if others can achieve the same magical balance of more power, less pollution and lower costs. In fact, cities ranging from Orlando to St. Louis to San Francisco to Portland, Oregon, have pledged to run entirely on renewable energy. Those places are much larger than Georgetown, of course, and no one would expect misty Portland to power a light bulb for long with solar energy, which is crucial to Georgetown’s success. But beyond its modest size, abundant sunshine and archetype-busting mayor, Georgetown has another edge, one that’s connected to a cherished Lone Star ideal: freedom.
Over $1 billion of federal money has been spent on the research and development of hydrogen and a medium for energy storage in the United States.[150] Both the National Renewable Energy Laboratory[151] and Sandia National Laboratories[152] have departments dedicated to hydrogen research. Hydrogen is useful for energy storage, and for use in airplanes and ships, but is not practical for automobile use, as it is not very efficient, compared to using a battery — for the same cost a person can travel three times as far using a battery electric vehicle.[153]
“California Looks to Stationary Energy Storage as a Solution to Peaker Plants” • Central California electric utility Pacific Gas & Electric is planning to replace three old natural gas power plants in its network with stationary energy storage installations from Tesla. California is looking to add 1.3 GW of storage to its power grid by 2020. [CleanTechnica]

Free electricity isnt all you get from a new home wind Generator, as soon as your system is up, you have improved your home value by atleast an equal amount of the investment. Your green energy home is more likely to sell compared to others with no home generation or emergency power system. Think about it. Look at homes for sale.. Can any of them generate their own free electricity, how many can compete with such a solid green energy capability like your home wind Generator delivers. Its also an attention getter and will bring people to see what its about if you ever need to sell, your home has a dramatic edge and a higher resale value.
Jump up ^ Noth, André (July 2008). "History of Solar Flight" (PDF). Autonomous Systems Lab. Zürich: Swiss Federal Institute of Technology. p. 3. Archived from the original (PDF) on 1 February 2012. Retrieved 8 July 2010. Günter Rochelt was the designer and builder of Solair I, a 16 m wingspan solar airplane ... 21st of August 1983 he flew in Solair I, mostly on solar energy and also thermals, during 5 hours 41 minutes.
Wind-generated electricity met nearly 4% of global electricity demand in 2015, with nearly 63 GW of new wind power capacity installed. Wind energy was the leading source of new capacity in Europe, the US and Canada, and the second largest in China. In Denmark, wind energy met more than 40% of its electricity demand while Ireland, Portugal and Spain each met nearly 20%.
Another economic measure, closely related to the energy payback time, is the energy returned on energy invested (EROEI) or energy return on investment (EROI),[131] which is the ratio of electricity generated divided by the energy required to build and maintain the equipment. (This is not the same as the economic return on investment (ROI), which varies according to local energy prices, subsidies available and metering techniques.) With expected lifetimes of 30 years,[132] the EROEI of PV systems are in the range of 10 to 30, thus generating enough energy over their lifetimes to reproduce themselves many times (6–31 reproductions) depending on what type of material, balance of system (BOS), and the geographic location of the system.[133]

At the end of 2014, worldwide PV capacity reached at least 177,000 megawatts. Photovoltaics grew fastest in China, followed by Japan and the United States, while Germany remains the world's largest overall producer of photovoltaic power, contributing about 7.0 percent to the overall electricity generation. Italy meets 7.9 percent of its electricity demands with photovoltaic power—the highest share worldwide.[119] For 2015, global cumulative capacity is forecasted to increase by more than 50 gigawatts (GW). By 2018, worldwide capacity is projected to reach as much as 430 gigawatts. This corresponds to a tripling within five years.[120] Solar power is forecasted to become the world's largest source of electricity by 2050, with solar photovoltaics and concentrated solar power contributing 16% and 11%, respectively. This requires an increase of installed PV capacity to 4,600 GW, of which more than half is expected to be deployed in China and India.[121]
The first words of everyone calling us are “the wind is blowing here all the time”. People consistently overestimate how windy their place actually is. They forget about all the times the wind does not blow, and only remember the windy days. Such is human nature. Before even considering a small wind turbine you need to have a good idea of the annual average wind speed for your site. The gold standard is to install a data-logging anemometer (wind meter) at the same height and location as the proposed wind turbine, and let it run for 3 to 5 years. Truth is that it is usually much too expensive to do for small wind turbines, and while logging for 1 year could give you some idea and is the absolute minimum for worthwhile wind information, it is too short to be very reliable. For most of us, the more economical way to find out about the local average wind speed is by looking at a wind atlas, meteorological data, airport information and possibly the local vegetation (for windy spots the trees take on interesting shapes).
Renewable energy variability is a problem for corporate buyers. But what is undesirable to buyers is attractive for insurance companies, whose core business revolves around managing weather-related risks. VFAs sit on top of a new or existing PPA and are effectively designed to pay the corporate buyer when they’re getting less renewable power than they contracted for, and give money to the insurer when there’s more.
The life-cycle greenhouse-gas emissions of solar power are in the range of 22 to 46 gram (g) per kilowatt-hour (kWh) depending on if solar thermal or solar PV is being analyzed, respectively. With this potentially being decreased to 15 g/kWh in the future.[121] For comparison (of weighted averages), a combined cycle gas-fired power plant emits some 400–599 g/kWh,[122] an oil-fired power plant 893 g/kWh,[122] a coal-fired power plant 915–994 g/kWh[123] or with carbon capture and storage some 200 g/kWh, and a geothermal high-temp. power plant 91–122 g/kWh.[122] The life cycle emission intensity of hydro, wind and nuclear power are lower than solar's as of 2011 as published by the IPCC, and discussed in the article Life-cycle greenhouse-gas emissions of energy sources. Similar to all energy sources were their total life cycle emissions primarily lay in the construction and transportation phase, the switch to low carbon power in the manufacturing and transportation of solar devices would further reduce carbon emissions. BP Solar owns two factories built by Solarex (one in Maryland, the other in Virginia) in which all of the energy used to manufacture solar panels is produced by solar panels. A 1-kilowatt system eliminates the burning of approximately 170 pounds of coal, 300 pounds of carbon dioxide from being released into the atmosphere, and saves up to 105 gallons of water consumption monthly.[124]
Using 100% renewable energy was first suggested in a Science paper published in 1975 by Danish physicist Bent Sørensen.[150] It was followed by several other proposals, until in 1998 the first detailed analysis of scenarios with very high shares of renewables were published. These were followed by the first detailed 100% scenarios. In 2006 a PhD thesis was published by Czisch in which it was shown that in a 100% renewable scenario energy supply could match demand in every hour of the year in Europe and North Africa. In the same year Danish Energy professor Henrik Lund published a first paper[151] in which he addresses the optimal combination of renewables, which was followed by several other papers on the transition to 100% renewable energy in Denmark. Since then Lund has been publishing several papers on 100% renewable energy. After 2009 publications began to rise steeply, covering 100% scenarios for countries in Europe, America, Australia and other parts of the world.[152]
By 2040, renewable energy is projected to equal coal and natural gas electricity generation. Several jurisdictions, including Denmark, Germany, the state of South Australia and some US states have achieved high integration of variable renewables. For example, in 2015 wind power met 42% of electricity demand in Denmark, 23.2% in Portugal and 15.5% in Uruguay. Interconnectors enable countries to balance electricity systems by allowing the import and export of renewable energy. Innovative hybrid systems have emerged between countries and regions.[27]
Where the reputable, and more expensive manufacturers are good in honouring their warranties, you are likely on your own with the cheap stuff. Even with a good warranty, take our word for it that you would much rather not make use of it. Even if the manufacturer supplies replacement parts, it is still expensive to install them. Not to mention that your turbine will not be making energy meanwhile.
The world of small wind turbines is much like the wild-west of a century ago: Anything goes, and no claim is too bold. Wind turbine manufacturers will even routinely make claims that are not supported by the Laws of Physics. Energy production claims are often exaggerated, as are power curves. In fact, this is the rule, not the exception. Those manufacturers that tell the truth are the exception. Many manufacturers have never tested their wind turbines under real-world conditions. Some have never tested their turbine before selling it to unsuspecting customers. We are not joking! Because we sell grid-tie inverters for small wind turbines we have a front-row seat when it comes to actual operation of turbines of many makes and models. It turns out that some do not work; they self-destruct within days, and sometimes run away and blow their inverter within seconds after being turned onfor  the first time (clearly nobody at the factory bothered to ever test it).
Smart grid refers to a class of technology people are using to bring utility electricity delivery systems into the 21st century, using computer-based remote control and automation.[65] These systems are made possible by two-way communication technology and computer processing that has been used for decades in other industries. They are beginning to be used on electricity networks, from the power plants and wind farms all the way to the consumers of electricity in homes and businesses. They offer many benefits to utilities and consumers—mostly seen in big improvements in energy efficiency on the electricity grid and in the energy users’ homes and offices.[65]
Free electricity isnt all you get from a new home wind Generator, as soon as your system is up, you have improved your home value by atleast an equal amount of the investment. Your green energy home is more likely to sell compared to others with no home generation or emergency power system. Think about it. Look at homes for sale.. Can any of them generate their own free electricity, how many can compete with such a solid green energy capability like your home wind Generator delivers. Its also an attention getter and will bring people to see what its about if you ever need to sell, your home has a dramatic edge and a higher resale value.
Artificial photosynthesis uses techniques including nanotechnology to store solar electromagnetic energy in chemical bonds by splitting water to produce hydrogen and then using carbon dioxide to make methanol.[182] Researchers in this field are striving to design molecular mimics of photosynthesis that utilize a wider region of the solar spectrum, employ catalytic systems made from abundant, inexpensive materials that are robust, readily repaired, non-toxic, stable in a variety of environmental conditions and perform more efficiently allowing a greater proportion of photon energy to end up in the storage compounds, i.e., carbohydrates (rather than building and sustaining living cells).[183] However, prominent research faces hurdles, Sun Catalytix a MIT spin-off stopped scaling up their prototype fuel-cell in 2012, because it offers few savings over other ways to make hydrogen from sunlight.[184]
Compact Linear Fresnel Reflectors are CSP-plants which use many thin mirror strips instead of parabolic mirrors to concentrate sunlight onto two tubes with working fluid. This has the advantage that flat mirrors can be used which are much cheaper than parabolic mirrors, and that more reflectors can be placed in the same amount of space, allowing more of the available sunlight to be used. Concentrating linear fresnel reflectors can be used in either large or more compact plants.[16][17]
×