How accurate are these numbers? This is the energy production a good horizontal-axis wind turbine can reach, if installed at the perfect site and height. These are the upper limit though, if your turbine produces anywhere near the number predicted by this table you should be doing your happy-dance! Most small wind turbine installations underperform significantly, in fact, the average seems to be about half of the predicted energy production (and many do not even reach that). There can be many reasons for the performance shortfall; poor site selection,  with more turbulent air than expected often has much to do with it. The reports in the ‘real world’ section following below illustrate this point. Many small wind turbines do not reach 30% overall efficiency, some are close to 0% (this is no joke!), so these numbers have only one direction to go. For off-grid battery charging wind turbines you should deduct 20 – 30% of the predicted numbers, due to the lower efficiency of a turbine tied to batteries, and the losses involved in charging batteries.
With investment subsidies, the financial burden falls upon the taxpayer, while with feed-in tariffs the extra cost is distributed across the utilities' customer bases. While the investment subsidy may be simpler to administer, the main argument in favour of feed-in tariffs is the encouragement of quality. Investment subsidies are paid out as a function of the nameplate capacity of the installed system and are independent of its actual power yield over time, thus rewarding the overstatement of power and tolerating poor durability and maintenance. Some electric companies offer rebates to their customers, such as Austin Energy in Texas, which offers $2.50/watt installed up to $15,000.[96]
A report by the United States Geological Survey estimated the projected materials requirement in order to fulfill the US commitment to supplying 20% of its electricity from wind power by 2030. They did not address requirements for small turbines or offshore turbines since those were not widely deployed in 2008, when the study was created. They found that there are increases in common materials such as cast iron, steel and concrete that represent 2–3% of the material consumption in 2008. Between 110,000 and 115,000 metric tons of fiber glass would be required annually, equivalent to 14% of consumption in 2008. They did not see a high increase in demand for rare metals compared to available supply, however rare metals that are also being used for other technologies such as batteries which are increasing its global demand need to be taken into account. Land, whbich might not be considered a material, is an important resource in deploying wind technologies. Reaching the 2030 goal would require 50,000 square kilometers of onshore land area and 11,000 square kilometers of offshore. This is not considered a problem in the US due to its vast area and the ability to use land for farming and grazing. A greater limitation for the technology would be the variability and transmission infrastructure to areas of higher demand.[54]
We now know that the electrical generator provides a means of energy conversion between the mechanical torque generated by the rotor blades, called the prime mover, and some electrical load. The mechanical connection of the wind turbine generator to the rotor blades is made through a main shaft which can be either a simple direct drive, or by using a gearbox to increase or decrease the generator speed relative to the rotational speed of the blades.
The tables above are for HAWTs, the regular horizontal “wind mill” type we are all familiar with. For VAWTs the tables can be used as well, but you have to convert their dimensions. Calculate the frontal area (swept area) of the VAWT by multiplying height and width, or for a curved egg-beater approximate the area. Now convert the surface area to a diameter, as if it were a circle: Diameter = √(4 • Area / Pi). That will give you a diameter for the table. Look up the energy production for that diameter and your average annual wind speed and do the following:

A subtype of Darrieus turbine with straight, as opposed to curved, blades. The cycloturbine variety has variable pitch to reduce the torque pulsation and is self-starting.[33] The advantages of variable pitch are: high starting torque; a wide, relatively flat torque curve; a higher coefficient of performance; more efficient operation in turbulent winds; and a lower blade speed ratio which lowers blade bending stresses. Straight, V, or curved blades may be used.[34]
A wide range of concentrating technologies exists: among the best known are the parabolic trough, the compact linear Fresnel reflector, the Stirling dish and the solar power tower. Various techniques are used to track the sun and focus light. In all of these systems a working fluid is heated by the concentrated sunlight, and is then used for power generation or energy storage.[11] Thermal storage efficiently allows up to 24-hour electricity generation.[12]
Renewable energy, after its generation, needs to be stored in a medium for use with autonomous devices as well as vehicles. Also, to provide household electricity in remote areas (that is areas which are not connected to the mains electricity grid), energy storage is required for use with renewable energy. Energy generation and consumption systems used in the latter case are usually stand-alone power systems.

A study of the material consumption trends and requirements for wind energy in Europe found that bigger turbines have a higher consumption of precious metals but lower material input per kW generated. The current material consumption and stock was compared to input materials for various onshore system sizes. In all EU countries the estimates for 2020 exceeded and doubled the values consumed in 2009. These countries would need to expand their resources to be able to meet the estimated demand for 2020. For example, currently the EU has 3% of world supply of fluorspar and it requires 14% by 2020. Globally, the main exporting countries are South Africa, Mexico and China. This is similar with other critical and valuable materials required for energy systems such as magnesium, silver and indium. In addition, the levels of recycling of these materials is very low and focusing on that could alleviate issues with supply in the future. It is important to note that since most of these valuable materials are also used in other emerging technologies, like LEDs, PVs and LCDs, it is projected that demand for them will continue to increase.[53]
Similarly, in the United States, the independent National Research Council has noted that "sufficient domestic renewable resources exist to allow renewable electricity to play a significant role in future electricity generation and thus help confront issues related to climate change, energy security, and the escalation of energy costs … Renewable energy is an attractive option because renewable resources available in the United States, taken collectively, can supply significantly greater amounts of electricity than the total current or projected domestic demand."[154]
Solar power panels that use nanotechnology, which can create circuits out of individual silicon molecules, may cost half as much as traditional photovoltaic cells, according to executives and investors involved in developing the products. Nanosolar has secured more than $100 million from investors to build a factory for nanotechnology thin-film solar panels. The company's plant has a planned production capacity of 430 megawatts peak power of solar cells per year. Commercial production started and first panels have been shipped[50] to customers in late 2007.[51]
The heat that is used for geothermal energy can be from deep within the Earth, all the way down to Earth's core – 4,000 miles (6,400 km) down. At the core, temperatures may reach over 9,000 °F (5,000 °C). Heat conducts from the core to surrounding rock. Extremely high temperature and pressure cause some rock to melt, which is commonly known as magma. Magma convects upward since it is lighter than the solid rock. This magma then heats rock and water in the crust, sometimes up to 700 °F (371 °C).[58]
The Nomad 20 Solar Panel combines highly efficient The Nomad 20 Solar Panel combines highly efficient monocrystalline technology in a foldable portable plug-and-play form. With a built-in junction box and innovative smart chip the Nomad 20 can directly charge handheld USB and 12-Volt devices directly from the sun just as fast as the wall. Combine the Nomad 20 ...  More + Product Details Close
The electrical machine most commonly used for wind turbines applications are those acting as generators, with synchronous generators and induction generators (as shown) being commonly used in larger wind turbine generators, while smaller and home made wind turbines tend to use a low speed DC generator or Dynamo as they are small, cheap and a lot easier to connect up.
Nearly all the gasoline sold in the United States today is mixed with 10% ethanol,[128] and motor vehicle manufacturers already produce vehicles designed to run on much higher ethanol blends. Ford, Daimler AG, and GM are among the automobile companies that sell "flexible-fuel" cars, trucks, and minivans that can use gasoline and ethanol blends ranging from pure gasoline up to 85% ethanol. By mid-2006, there were approximately 6 million ethanol compatible vehicles on U.S. roads.[129]
The picture the company is using to sell this on Amazon is not of the turbine they are selling, but a picture of the best-selling South-West Windpower Air X turbine and I bought this item believing it to be this turbine. I also have one of these turbines which has run faultlessly now for 7 years. I am very disappointed with the Sunforce and often feel like throwing into the sea! It's a piece of junk!!
Nuclear power. After coal, the next largest source of our electricity is nuclear power. While nuclear plants don't cause air pollution, they do create radioactive waste, which must be stored for thousands of years. As accidents at Three Mile Island and Chernobyl proved, nuclear plants also carry the risk of catastrophic failure. And nuclear power can be very expensive.
From the end of 2004, worldwide renewable energy capacity grew at rates of 10–60% annually for many technologies. In 2015 global investment in renewables rose 5% to $285.9 billion, breaking the previous record of $278.5 billion in 2011. 2015 was also the first year that saw renewables, excluding large hydro, account for the majority of all new power capacity (134 GW, making up 53.6% of the total). Of the renewables total, wind accounted for 72 GW and solar photovoltaics 56 GW; both record-breaking numbers and sharply up from 2014 figures (49 GW and 45 GW respectively). In financial terms, solar made up 56% of total new investment and wind accounted for 38%.
As local wind speed increases, so does the power output. Since this type of generator uses wind as 'fuel', it is important to choose an appropriate site for mounting the turbine. The ideal location for a wind generator is 20 feet above any surrounding object within a 250-foot radius. Wind speed increases with height above ground, so a taller mast can provide significant gains in energy production.
There is no energy in the wind at those wind speeds, nothing to harvest for the turbine. While it may make you feel good to see your expensive yard toy spin, it is not doing anything meaningful in a breeze like that: To give you some idea, a wind turbine with a diameter of 6 meters (pretty large as small wind turbines go) can realistically produce just 120 Watt at 3.5 m/s wind speed. That same turbine would be rated at 6 kW (or more, see the next section), so energy production at cut-in really is just a drop in the bucket. What is more, due to the way grid-tie inverters work, you are about as likely to be loosing energy around cut-in wind speed to keep the inverter powered, as you are in making any energy, resulting in a net-loss of electricity production.
Even if you can’t directly purchase and install a solar system because you rent your home, have inadequate solar resources, or lack financing, you may still benefit from switching to solar electricity, and there numerous business models that make solar easier, cheaper, and more accessible. Options such as community or shared solar programs, solar leases, and power-purchase agreements allow millions of households to take advantage of solar energy. Learn about the various ways you can go solar.
All these electrical machines are electromechanical devices that work on Faraday’s law of electromagnetic induction. That is they operate through the interaction of a magnetic flux and an electric current, or flow of charge. As this process is reversible, the same machine can be used as a conventional electrical motor for converting the electrical power into mechanical power, or as a generator converting the mechanical power back into the electrical power.

“As Trump’s Tariffs Raise the Cost of Solar Installations, Elon Musk and Tesla Cut Their Prices” • Tesla, unmoved by tariffs, is reducing prices on its solar systems 10–20% in recognition of the progress it has made streamlining its solar sales process by integrating Tesla Energy products into its existing high-traffic storefronts. [Red, Green, and Blue]
Solar energy, radiant light and heat from the sun, is harnessed using a range of ever-evolving technologies such as solar heating, photovoltaics, concentrated solar power (CSP), concentrator photovoltaics (CPV), solar architecture and artificial photosynthesis.[49][50] Solar technologies are broadly characterized as either passive solar or active solar depending on the way they capture, convert and distribute solar energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light dispersing properties, and designing spaces that naturally circulate air. Active solar technologies encompass solar thermal energy, using solar collectors for heating, and solar power, converting sunlight into electricity either directly using photovoltaics (PV), or indirectly using concentrated solar power (CSP).
There have been "not in my back yard" (NIMBY) concerns relating to the visual and other impacts of some wind farms, with local residents sometimes fighting or blocking construction.[192] In the United States, the Massachusetts Cape Wind project was delayed for years partly because of aesthetic concerns. However, residents in other areas have been more positive. According to a town councilor, the overwhelming majority of locals believe that the Ardrossan Wind Farm in Scotland has enhanced the area.[193]
In Denmark by 1900, there were about 2500 windmills for mechanical loads such as pumps and mills, producing an estimated combined peak power of about 30 (MW). The largest machines were on 24-meter (79 ft) towers with four-bladed 23-meter (75 ft) diameter rotors. By 1908 there were 72 wind-driven electric generators operating in the United States from 5 kW to 25 kW. Around the time of World War I, American windmill makers were producing 100,000 farm windmills each year, mostly for water-pumping.[9]
Turbines used in residential applications can range in size from 400 Watts to 100 kW (100 kW for very large loads), depending on the amount of electricity you want to generate. For residential applications, you should establish an energy budget and see whether financial incentives are available. This information will help determine the turbine size you will need. Because energy efficiency is usually less expensive than energy production, making your house more energy efficient will probably be more cost effective and will reduce the size of the wind turbine you need (see How Can I Make My Home More Energy Efficient?). Wind turbine manufacturers, dealers, and installers can help you size your system based on your electricity needs and the specifics of your local wind resource and micro-siting.
2010 was a record year for green energy investments. According to a report from Bloomberg New Energy Finance, nearly US $243 billion was invested in wind farms, solar power, electric cars, and other alternative technologies worldwide, representing a 30 percent increase from 2009 and nearly five times the money invested in 2004. China had $51.1 billion investment in clean energy projects in 2010, by far the largest figure for any country.[155]

Grid parity, the point at which the cost of photovoltaic electricity is equal to or cheaper than the price of grid power, is more easily achieved in areas with abundant sun and high costs for electricity such as in California and Japan.[80] In 2008, The levelized cost of electricity for solar PV was $0.25/kWh or less in most of the OECD countries. By late 2011, the fully loaded cost was predicted to fall below $0.15/kWh for most of the OECD and to reach $0.10/kWh in sunnier regions. These cost levels are driving three emerging trends: vertical integration of the supply chain, origination of power purchase agreements (PPAs) by solar power companies, and unexpected risk for traditional power generation companies, grid operators and wind turbine manufacturers.[81][dead link]
×