Modern turbines usually have a small onboard crane for hoisting maintenance tools and minor components. However, large heavy components like generator, gearbox, blades and so on are rarely replaced and a heavy lift external crane is needed in those cases. If the turbine has a difficult access road, a containerized crane can be lifted up by the internal crane to provide heavier lifting.[68]
The political purpose of incentive policies for PV is to facilitate an initial small-scale deployment to begin to grow the industry, even where the cost of PV is significantly above grid parity, to allow the industry to achieve the economies of scale necessary to reach grid parity. The policies are implemented to promote national energy independence, high tech job creation and reduction of CO2 emissions. Three incentive mechanisms are often used in combination as investment subsidies: the authorities refund part of the cost of installation of the system, the electricity utility buys PV electricity from the producer under a multiyear contract at a guaranteed rate, and Solar Renewable Energy Certificates (SRECs)
“Climate Change Helped Make California a Tinder Box for its Record-Setting Wildfires” • Camp Fire, which is devastating Sierra Nevada foothills, has become the most destructive wildfire in California’s history. By the evening of November 10, it had scorched 105,000 acres of land and killed 23 people, with more than 100 people still unaccounted for. [Quartz]
Renewable energy resources and significant opportunities for energy efficiency exist over wide geographical areas, in contrast to other energy sources, which are concentrated in a limited number of countries. Rapid deployment of renewable energy and energy efficiency, and technological diversification of energy sources, would result in significant energy security and economic benefits.[8] It would also reduce environmental pollution such as air pollution caused by burning of fossil fuels and improve public health, reduce premature mortalities due to pollution and save associated health costs that amount to several hundred billion dollars annually only in the United States.[21] Renewable energy sources, that derive their energy from the sun, either directly or indirectly, such as hydro and wind, are expected to be capable of supplying humanity energy for almost another 1 billion years, at which point the predicted increase in heat from the sun is expected to make the surface of the earth too hot for liquid water to exist.[22][23]
The energy payback time (EPBT) of a power generating system is the time required to generate as much energy as is consumed during production and lifetime operation of the system. Due to improving production technologies the payback time has been decreasing constantly since the introduction of PV systems in the energy market.[128] In 2000 the energy payback time of PV systems was estimated as 8 to 11 years[129] and in 2006 this was estimated to be 1.5 to 3.5 years for crystalline silicon PV systems[121] and 1–1.5 years for thin film technologies (S. Europe).[121] These figures fell to 0.75–3.5 years in 2013, with an average of about 2 years for crystalline silicon PV and CIS systems.[130]
The energy in the wind goes up with the cube of the wind speed. Double the wind speed and you have 2 * 2 * 2 = 8 times the energy! Sit back and let the full weight of that sink in for a moment: It means that even a small difference in annual average wind speed will make a BIG difference in how much your wind turbine will produce: Putting that turbine in a place that has just 10% more wind will net you 1.1 * 1.1 * 1.1 = 1.33 = a full 33% more energy!

Perfect for camping tailgating or when you need Perfect for camping tailgating or when you need power on the go. The FIRMAN P01001 generator features 1050 starting Watts and 1300 running watts. Power is supplied by our Max Pro Series 80cc FIRMAN engine which runs cool and efficient thanks to its Phoenix Fat Head Block. Our Whisper Series ...  More + Product Details Close

A photovoltaic system converts light into electrical direct current (DC) by taking advantage of the photoelectric effect.[51] Solar PV has turned into a multi-billion, fast-growing industry, continues to improve its cost-effectiveness, and has the most potential of any renewable technologies together with CSP.[52][53] Concentrated solar power (CSP) systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. Commercial concentrated solar power plants were first developed in the 1980s. CSP-Stirling has by far the highest efficiency among all solar energy technologies.
In terms of ocean energy, another third-generation technology, Portugal has the world's first commercial wave farm, the Aguçadora Wave Park, under construction in 2007. The farm will initially use three Pelamis P-750 machines generating 2.25 MW.[44][45] and costs are put at 8.5 million euro. Subject to successful operation, a further 70 million euro is likely to be invested before 2009 on a further 28 machines to generate 525 MW.[46] Funding for a wave farm in Scotland was announced in February, 2007 by the Scottish Executive, at a cost of over 4 million pounds, as part of a £13 million funding packages for ocean power in Scotland. The farm will be the world's largest with a capacity of 3 MW generated by four Pelamis machines.[47] (see also Wave farm).
Solar energy, radiant light and heat from the sun, is harnessed using a range of ever-evolving technologies such as solar heating, photovoltaics, concentrated solar power (CSP), concentrator photovoltaics (CPV), solar architecture and artificial photosynthesis.[49][50] Solar technologies are broadly characterized as either passive solar or active solar depending on the way they capture, convert and distribute solar energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light dispersing properties, and designing spaces that naturally circulate air. Active solar technologies encompass solar thermal energy, using solar collectors for heating, and solar power, converting sunlight into electricity either directly using photovoltaics (PV), or indirectly using concentrated solar power (CSP).
Responsible development of all of America’s rich energy resources -- including solar, wind, water, geothermal, bioenergy & nuclear -- will help ensure America’s continued leadership in clean energy. Moving forward, the Energy Department will continue to drive strategic investments in the transition to a cleaner, domestic and more secure energy future.
The majority of green pricing programs charge a higher price per kilowatt-hour to support an increased percentage of renewable sources or to buy discrete kilowatt-hour blocks of renewable energy. Other programs have fixed monthly fees, round up customer bills, charge for units of renewable capacity, or offer renewable energy systems for lease or purchase.
2010 was a record year for green energy investments. According to a report from Bloomberg New Energy Finance, nearly US $243 billion was invested in wind farms, solar power, electric cars, and other alternative technologies worldwide, representing a 30 percent increase from 2009 and nearly five times the money invested in 2004. China had $51.1 billion investment in clean energy projects in 2010, by far the largest figure for any country.[155]

In terms of ocean energy, another third-generation technology, Portugal has the world's first commercial wave farm, the Aguçadora Wave Park, under construction in 2007. The farm will initially use three Pelamis P-750 machines generating 2.25 MW.[44][45] and costs are put at 8.5 million euro. Subject to successful operation, a further 70 million euro is likely to be invested before 2009 on a further 28 machines to generate 525 MW.[46] Funding for a wave farm in Scotland was announced in February, 2007 by the Scottish Executive, at a cost of over 4 million pounds, as part of a £13 million funding packages for ocean power in Scotland. The farm will be the world's largest with a capacity of 3 MW generated by four Pelamis machines.[47] (see also Wave farm).
Research is also undertaken in this field of artificial photosynthesis. It involves the use of nanotechnology to store solar electromagnetic energy in chemical bonds, by splitting water to produce hydrogen fuel or then combining with carbon dioxide to make biopolymers such as methanol. Many large national and regional research projects on artificial photosynthesis are now trying to develop techniques integrating improved light capture, quantum coherence methods of electron transfer and cheap catalytic materials that operate under a variety of atmospheric conditions.[119] Senior researchers in the field have made the public policy case for a Global Project on Artificial Photosynthesis to address critical energy security and environmental sustainability issues.[120]
Alternatively, SRECs allow for a market mechanism to set the price of the solar generated electricity subsity. In this mechanism, a renewable energy production or consumption target is set, and the utility (more technically the Load Serving Entity) is obliged to purchase renewable energy or face a fine (Alternative Compliance Payment or ACP). The producer is credited for an SREC for every 1,000 kWh of electricity produced. If the utility buys this SREC and retires it, they avoid paying the ACP. In principle this system delivers the cheapest renewable energy, since the all solar facilities are eligible and can be installed in the most economic locations. Uncertainties about the future value of SRECs have led to long-term SREC contract markets to give clarity to their prices and allow solar developers to pre-sell and hedge their credits.

In October 2018, the American Council for an Energy-Efficient Economy (ACEEE) released its annual "State Energy Efficiency Scorecard." The scorecard concluded that states and electric utility companies are continuing to expand energy efficiency measures in order to meet clean energy goals. In 2017, the U.S. spent $6.6 billion in electricity efficiency programs. $1.3 billion was spent on natural gas efficiency. These programs resulted in 27.3 million megawatt hours (MWh) of electricity saved.[160]
Other cities won’t have it so easy. Take Atlanta. Residents buy energy from Georgia Power, which is owned by investors. As things stand, Atlantans have no control over how their power is generated, though that may change. In 2019, Georgia Power, by state law, has to update its energy plan. Ted Terry, director of the Georgia chapter of the Sierra Club, says the nonprofit is working with Atlanta officials to incorporate renewables, primarily solar, into the state’s plan. Developing such energy sources on a scale that can power a metro area with 5.8 million people, as in Atlanta, or 7.68 million in the San Francisco Bay Area, or 3.3 million in San Diego, will prove challenging. But it doesn’t seem impossible. In 2015, California set a goal of deriving 50 percent of its energy from renewable sources by 2030. Its three investor-owned utilities—Pacific Gas & Electric, Southern California Edison and San Diego Gas & Electric—are poised to achieve that goal just two years from now, or ten years early.
In net metering the price of the electricity produced is the same as the price supplied to the consumer, and the consumer is billed on the difference between production and consumption. Net metering can usually be done with no changes to standard electricity meters, which accurately measure power in both directions and automatically report the difference, and because it allows homeowners and businesses to generate electricity at a different time from consumption, effectively using the grid as a giant storage battery. With net metering, deficits are billed each month while surpluses are rolled over to the following month. Best practices call for perpetual roll over of kWh credits.[97] Excess credits upon termination of service are either lost, or paid for at a rate ranging from wholesale to retail rate or above, as can be excess annual credits. In New Jersey, annual excess credits are paid at the wholesale rate, as are left over credits when a customer terminates service.[98]
Solar heating systems are a well known second-generation technology and generally consist of solar thermal collectors, a fluid system to move the heat from the collector to its point of usage, and a reservoir or tank for heat storage and subsequent use. The systems may be used to heat domestic hot water, swimming pool water, or for space heating.[21] The heat can also be used for industrial applications or as an energy input for other uses such as cooling equipment.[22] In many climates, a solar heating system can provide a very high percentage (20 to 80%) of domestic hot water energy. Energy received from the sun by the earth is that of electromagnetic radiation. Light ranges of visible, infrared, ultraviolet, x-rays, and radio waves received by the earth through solar energy. The highest power of radiation comes from visible light. Solar power is complicated due to changes in seasons and from day to night. Cloud cover can also add to complications of solar energy, and not all radiation from the sun reaches earth because it is absorbed and dispersed due to clouds and gases within the earth's atmospheres.[23]

It is unfortunate to see how well marketing for small wind turbines is working: I often see people post questions on forums, where they are looking for a wind turbine “with a low cut-in wind speed”. Depending on whom you ask, the cut-in wind speed is either the wind speed where the turbine starts turning, or the wind speed where it starts to produce some power. For most wind turbines it is around 2.5 – 3.5 m/s (5.5 – 8 mph), and it is an utterly meaningless parameter.
One- to 10-kW turbines can be used in applications such as pumping water. Wind energy has been used for centuries to pump water and grind grain. Although mechanical windmills still provide a sensible, low-cost option for pumping water in low-wind areas, farmers and ranchers are finding that wind-electric pumping is more versatile and they can pump twice the volume for the same initial investment. In addition, mechanical windmills must be placed directly above the well, which may not take advantage of available wind resources. Wind-electric pumping systems can be placed where the wind resource is the best and connected to the pump motor with an electric cable. However, in areas with a low wind resource, mechanical windmills can provide more efficient water pumping.
Through collaboration, smaller buyers can benefit from economies of scale, while larger buyers can continue to see cost benefits while achieving their renewable energy goals. Aggregation allows companies to procure in a mutually beneficial way with relatively little give and take. For that reason, RMI believes this marks “the beginning of a trend,” Haley said.  
Index of solar energy articles List of concentrating solar thermal power companies List of photovoltaics companies List of photovoltaic power stations List of pioneering solar buildings List of rooftop photovoltaic installations List of solar car teams List of solar powered products List of solar thermal power stations People associated with solar power

In its 2014 edition of the Technology Roadmap: Solar Photovoltaic Energy report, the International Energy Agency (IEA) published prices for residential, commercial and utility-scale PV systems for eight major markets as of 2013 (see table below).[2] However, DOE's SunShot Initiative has reported much lower U.S. installation prices. In 2014, prices continued to decline. The SunShot Initiative modeled U.S. system prices to be in the range of $1.80 to $3.29 per watt.[76] Other sources identify similar price ranges of $1.70 to $3.50 for the different market segments in the U.S.,[77] and in the highly penetrated German market, prices for residential and small commercial rooftop systems of up to 100 kW declined to $1.36 per watt (€1.24/W) by the end of 2014.[78] In 2015, Deutsche Bank estimated costs for small residential rooftop systems in the U.S. around $2.90 per watt. Costs for utility-scale systems in China and India were estimated as low as $1.00 per watt.[79]
Technology advances are opening up a huge new market for solar power: the approximately 1.3 billion people around the world who don't have access to grid electricity. Even though they are typically very poor, these people have to pay far more for lighting than people in rich countries because they use inefficient kerosene lamps. Solar power costs half as much as lighting with kerosene.[136] As of 2010, an estimated 3 million households get power from small solar PV systems.[137] Kenya is the world leader in the number of solar power systems installed per capita. More than 30,000 very small solar panels, each producing 1[138]2 to 30 watts, are sold in Kenya annually. Some Small Island Developing States (SIDS) are also turning to solar power to reduce their costs and increase their sustainability.
Modern turbines usually have a small onboard crane for hoisting maintenance tools and minor components. However, large heavy components like generator, gearbox, blades and so on are rarely replaced and a heavy lift external crane is needed in those cases. If the turbine has a difficult access road, a containerized crane can be lifted up by the internal crane to provide heavier lifting.[68]
“Climate Change Helped Make California a Tinder Box for its Record-Setting Wildfires” • Camp Fire, which is devastating Sierra Nevada foothills, has become the most destructive wildfire in California’s history. By the evening of November 10, it had scorched 105,000 acres of land and killed 23 people, with more than 100 people still unaccounted for. [Quartz]
For either photovoltaic or thermal systems, one option is to loft them into space, particularly Geosynchronous orbit. To be competitive with Earth-based solar power systems, the specific mass (kg/kW) times the cost to loft mass plus the cost of the parts needs to be $2400 or less. I.e., for a parts cost plus rectenna of $1100/kW, the product of the $/kg and kg/kW must be $1300/kW or less.[190] Thus for 6.5 kg/kW, the transport cost cannot exceed $200/kg. While that will require a 100 to one reduction, SpaceX is targeting a ten to one reduction, Reaction Engines may make a 100 to one reduction possible.
Construction of the Salt Tanks which provide efficient thermal energy storage[103] so that output can be provided after the sun goes down, and output can be scheduled to meet demand requirements.[104] The 280 MW Solana Generating Station is designed to provide six hours of energy storage. This allows the plant to generate about 38 percent of its rated capacity over the course of a year.[105]
Wind power is widely used in Europe, China, and the United States. From 2004 to 2014, worldwide installed capacity of wind power has been growing from 47 GW to 369 GW—a more than sevenfold increase within 10 years with 2014 breaking a new record in global installations (51 GW). As of the end of 2014, China, the United States and Germany combined accounted for half of total global capacity.[83] Several other countries have achieved relatively high levels of wind power penetration, such as 21% of stationary electricity production in Denmark, 18% in Portugal, 16% in Spain, and 14% in Ireland in 2010 and have since continued to expand their installed capacity.[105][106] More than 80 countries around the world are using wind power on a commercial basis.[76]
Nuclear power. After coal, the next largest source of our electricity is nuclear power. While nuclear plants don't cause air pollution, they do create radioactive waste, which must be stored for thousands of years. As accidents at Three Mile Island and Chernobyl proved, nuclear plants also carry the risk of catastrophic failure. And nuclear power can be very expensive.
The oldest solar thermal power plant in the world is the 354 megawatt (MW) SEGS thermal power plant, in California.[109] The Ivanpah Solar Electric Generating System is a solar thermal power project in the California Mojave Desert, 40 miles (64 km) southwest of Las Vegas, with a gross capacity of 377 MW.[110] The 280 MW Solana Generating Station is a solar power plant near Gila Bend, Arizona, about 70 miles (110 km) southwest of Phoenix, completed in 2013. When commissioned it was the largest parabolic trough plant in the world and the first U.S. solar plant with molten salt thermal energy storage.[111]
Many residential PV systems are connected to the grid wherever available, especially in developed countries with large markets.[10] In these grid-connected PV systems, use of energy storage is optional. In certain applications such as satellites, lighthouses, or in developing countries, batteries or additional power generators are often added as back-ups. Such stand-alone power systems permit operations at night and at other times of limited sunlight.
×