The Vestas V164 has a rated capacity of 8 MW,[79] later upgraded to 9.5 MW.[80][81] The wind turbine has an overall height of 220 m (722 ft), a diameter of 164 m (538 ft), is for offshore use, and is the world's largest-capacity wind turbine since its introduction in 2014. The conventional drive train consist of a main gearbox and a medium speed PM generator. Prototype installed in 2014 at the National Test Center Denmark nearby Østerild. Series production began end of 2015.
Our latest innovation in the Industrial Internet era, The Digital Wind Farm, is making our turbines smarter and more connected than ever before. A dynamic, connected and adaptable wind energy ecosystem, the Digital Wind Farm pairs our newest turbines with a digital infrastructure, allowing customers to connect, monitor, predict and optimize unit and site performance.

A: A residential solar PV system can cost anywhere from $25,000 to $35,000, on average. Because of the high cost, a power purchase agreement (PPA), loan, or lease are popular options for financing a solar PV system. Naturally, there are benefits and drawbacks with each option. We won’t cover them in detail here, but you can learn more in our article “Financing Options for Solar Power Explained.”
When energy is purchased from the electricity network, the power reaching the consumer will not necessarily be generated from green energy sources. The local utility company, electric company, or state power pool buys their electricity from electricity producers who may be generating from fossil fuel, nuclear or renewable energy sources. In many countries green energy currently provides a very small amount of electricity, generally contributing less than 2 to 5% to the overall pool. In some U.S. states, local governments have formed regional power purchasing pools using Community Choice Aggregation and Solar Bonds to achieve a 51% renewable mix or higher, such as in the City of San Francisco.[76]
Since we mentioned maintenance: Consider that in a reasonably windy place a wind turbine can run 7000 hours or more per year. If it were a car, going at 50 km/h (30 mph), it would travel 350,000 km (or 200,000+ miles). That means you should plan for an annual inspection, and perform the needed maintenance (greasing for example), regardless of the recommendation of the manufacturer. It is just as important to inspect and maintain the tower annually. We know of a tower that collapsed because nuts worked themselves loose from their bolts over 2½ years time, no inspection nor maintenance were done during that time, ultimately leading to its undoing. Wind turbines and towers live in a very harsh environment. It is important to check for issues, such as loose bolts or tower guy wires that need re-tensioning, before they become a problem.
Small-scale turbines are expensive (one manufacturer says a typical system costs $40,000 to $60,000 to install), though some of that outlay can be offset by federal and local tax credits. Experts recommend that you buy one certified by the Small Wind Certification Council. Turbine manufacturers include Bergey Wind Power, Britwind and Xzeres Wind; look on their websites for local dealers.

With our 7 to 11 blade models, you'll get power generation in low wind areas. Regions and locations with high wind speeds are perfect for 3 to 5 blade configurations. No matter your location, we have the ideal wind turbine and blade set combination for you! Feel free to contact one of our many sales associates or technicians to get you started, to improve an existing setup, or to further your project.
In cases of self consumption of the solar energy, the payback time is calculated based on how much electricity is not purchased from the grid. For example, in Germany, with electricity prices of 0.25 €/kWh and insolation of 900 kWh/kW, one kWp will save €225 per year, and with an installation cost of 1700 €/KWp the system cost will be returned in less than seven years.[91] However, in many cases, the patterns of generation and consumption do not coincide, and some or all of the energy is fed back into the grid. The electricity is sold, and at other times when energy is taken from the grid, electricity is bought. The relative costs and prices obtained affect the economics. In many markets, the price paid for sold PV electricity is significantly lower than the price of bought electricity, which incentivizes self consumption.[92] Moreover, separate self consumption incentives have been used in e.g. Germany and Italy.[92] Grid interaction regulation has also included limitations of grid feed-in in some regions in Germany with high amounts of installed PV capacity.[92][93] By increasing self consumption, the grid feed-in can be limited without curtailment, which wastes electricity.[94]
At the end of 2014, worldwide PV capacity reached at least 177,000 megawatts. Photovoltaics grew fastest in China, followed by Japan and the United States, while Germany remains the world's largest overall producer of photovoltaic power, contributing about 7.0 percent to the overall electricity generation. Italy meets 7.9 percent of its electricity demands with photovoltaic power—the highest share worldwide.[119] For 2015, global cumulative capacity is forecasted to increase by more than 50 gigawatts (GW). By 2018, worldwide capacity is projected to reach as much as 430 gigawatts. This corresponds to a tripling within five years.[120] Solar power is forecasted to become the world's largest source of electricity by 2050, with solar photovoltaics and concentrated solar power contributing 16% and 11%, respectively. This requires an increase of installed PV capacity to 4,600 GW, of which more than half is expected to be deployed in China and India.[121]
Julia Pyper is a Senior Editor at Greentech Media covering clean energy policy, the solar industry, grid edge technologies and electric mobility. She previously reported for E&E Publishing, and has covered clean energy and climate change issues across the U.S. and abroad, including in Haiti, Israel and the Maldives. Julia holds degrees from McGill and Columbia Universities. Find her on Twitter @JMPyper.

You will find links to pictures that I have published of home wind Generator rooftop system installations done recently. Some are featured in newspaper articles and so forth. WindEnergy7 LLC has invented and filed for patents on a few of the technologies that make home rooftop wind Generators feasible. We have been busy training and supporting owners and dealers from California to New Jersey over the past couple of years to expand our network of local home wind Generator dealers.
Japan and China have national programs aimed at commercial scale Space-Based Solar Power (SBSP). The China Academy of Space Technology (CAST) won the 2015 International SunSat Design Competition with this video of their Multi-Rotary Joint design. Proponents of SBSP claim that Space-Based Solar Power would be clean, constant, and global, and could scale to meet all planetary energy demand.[56] A recent multi-agency industry proposal (echoing the 2008 Pentagon recommendation) won the SECDEF/SECSTATE/USAID Director D3 (Diplomacy, Development, Defense) Innovation Challenge.[57]

Markets for second-generation technologies are strong and growing, but only in a few countries. The challenge is to broaden the market base for continued growth worldwide. Strategic deployment in one country not only reduces technology costs for users there, but also for those in other countries, contributing to overall cost reductions and performance improvement.
A typical home uses approximately 10,932 kilowatt-hours (kWh) of electricity per year (about 911 kWh per month).[1] Depending on the average wind speed in the area, a wind turbine rated in the range of 5 to 15 kW would be required to make a significant contribution to this demand. A 1.5-kW wind turbine will meet the needs of a home requiring 300 kWh per month in a location with a 14 MPH (6.26 meters per second) annual average wind speed.[2] The manufacturer, dealer, or installer can provide you with the expected annual energy output of the turbine as a function of annual average wind speed. The manufacturer will also provide information about any maximum wind speeds at which the turbine is designed to operate safely. Most turbines have automatic overspeed-governing systems to keep the rotor from spinning out of control in extremely high winds.
In 2007, the US Congress directed the Department of Energy to report on ways to reduce water consumption by CSP. The subsequent report noted that dry cooling technology was available that, although more expensive to build and operate, could reduce water consumption by CSP by 91 to 95 percent. A hybrid wet/dry cooling system could reduce water consumption by 32 to 58 percent.[138] A 2015 report by NREL noted that of the 24 operating CSP power plants in the US, 4 used dry cooling systems. The four dry-cooled systems were the three power plants at the Ivanpah Solar Power Facility near Barstow, California, and the Genesis Solar Energy Project in Riverside County, California. Of 15 CSP projects under construction or development in the US as of March 2015, 6 were wet systems, 7 were dry systems, 1 hybrid, and 1 unspecified.
The primary obstacle that is preventing the large scale implementation of solar powered energy generation is the inefficiency of current solar technology. Currently, photovoltaic (PV) panels only have the ability to convert around 24% of the sunlight that hits them into electricity.[125] At this rate, solar energy still holds many challenges for widespread implementation, but steady progress has been made in reducing manufacturing cost and increasing photovoltaic efficiency. Both Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), have heavily funded solar research programs. The NREL solar program has a budget of around $75 million [126] and develops research projects in the areas of photovoltaic (PV) technology, solar thermal energy, and solar radiation.[127] The budget for Sandia’s solar division is unknown, however it accounts for a significant percentage of the laboratory’s $2.4 billion budget.[128] Several academic programs have focused on solar research in recent years. The Solar Energy Research Center (SERC) at University of North Carolina (UNC) has the sole purpose of developing cost effective solar technology. In 2008, researchers at Massachusetts Institute of Technology (MIT) developed a method to store solar energy by using it to produce hydrogen fuel from water.[129] Such research is targeted at addressing the obstacle that solar development faces of storing energy for use during nighttime hours when the sun is not shining. In February 2012, North Carolina-based Semprius Inc., a solar development company backed by German corporation Siemens, announced that they had developed the world’s most efficient solar panel. The company claims that the prototype converts 33.9% of the sunlight that hits it to electricity, more than double the previous high-end conversion rate.[130] Major projects on artificial photosynthesis or solar fuels are also under way in many developed nations.[131]
I ask Gore about the lessons he takes from Georgetown. “I think it’s important to pay attention to a CPA who becomes a mayor and takes an objective look at how he can save money for the citizens of his community, even if it means ignoring ideological presuppositions about fossil energy. Especially when the mayor in question is in the heart of oil and gas country.”
Previously, the largest U.S. city fully powered by renewables was Burlington, Vermont (pop. 42,000), home to Senator Bernie Sanders, the jam band Phish and the original Ben & Jerry’s. Georgetown’s feat is all the more dramatic because it demolishes the notion that sustainability is synonymous with socialism and GMO-free ice cream. “You think of climate change and renewable energy, from a political standpoint, on the left-hand side of the spectrum, and what I’ve done is toss all those partisan political thoughts aside,” Ross says. “We’re doing this because it’s good for our citizens. Cheaper electricity is better. Clean energy is better than fossil fuels.”

$Stop getting twisted!! Gold Plated Contacts Heavy 30 amp Per conductor slip ring total 90 amps....Great for even heavy 12 volt environment wind generators as used in our Hurricane XP turbines Specs ---30 amps per conductor --- 250 volts AC/DC per circuit ---2200 watts per conductor --- rpms 0-300 ---Gold Plated Contacts ---Operational Lifespan: 80,000,000 revolutions depending on temperature, rotation speed and enviroment This rotating connector will be great for the wind generator. The current can be split up in DC applications by using two conductors to cut down on the resistance. If you have application specific questions feel free to ask me before buying. Has 3 mounting holes in colar and long wires for easy installation. To International buyers: the sales price does not include customs or duties that your country may include.


Stop getting twisted!! Gold Plated Contacts Heavy 30 amp Per conductor slip ring total 180 amps....Great for even heavy 12 volt environment wind generators as used in our Cat 5 and Freedom II Dual PMA Turbines This rotating connector will be great for the wind generator. The current can be split up in DC applications by using two conductors to cut down on the resistance. If you have application specific questions feel free to ask me before buying. Has 3 mounting holes in collar and long wires for easy installation Shared Specifications Wires 6 Current 0~30A Voltage 600 VDC/VAC Max speed 250RPM Overall diameter 30mm Length 66mm Contact Material Precious Metal:gold-gold Contact Resistance <2mOhm Housing Material Plastics Torque 0.06N.
The Vestas V164 has a rated capacity of 8 MW,[79] later upgraded to 9.5 MW.[80][81] The wind turbine has an overall height of 220 m (722 ft), a diameter of 164 m (538 ft), is for offshore use, and is the world's largest-capacity wind turbine since its introduction in 2014. The conventional drive train consist of a main gearbox and a medium speed PM generator. Prototype installed in 2014 at the National Test Center Denmark nearby Østerild. Series production began end of 2015.
The energy it calculates is in kWh per year, the diameter of the wind turbine rotor is in meters, the wind speed is annual average for the turbine hub height in m/s. The equation uses a Weibull wind distribution with a factor of K=2, which is about right for inland sites. An overall efficiency of the turbine, from wind to electrical grid, of 30% is used. That is a reasonable, real-world efficiency number. Here is a table that shows how average annual wind speed, turbine size, and annual energy production relate:

Today that initiative, the Green Climate Fund, is an “empty shell,” Mr. Ban said in a recent phone interview. The lifelong diplomat — who recently assumed the presidency of the Global Green Growth Institute, an international organization based in Seoul, South Korea, that focuses on clean energy development — said he hoped to use the next chapter of his career to help poor countries meet their goals under the Paris agreement on climate change.
A typical house usually requires a home wind turbine with a 5 kW generating capacity to meet all its energy requirements. A turbine that offers this much power would have to be around 13 to 18 feet in diameter and positioned in an area where strong winds often pass through. There are also plenty of smaller, cheaper turbines, but these variants produce less power and are less reliable than their more expensive counterparts.
Run-of-the-river hydroelectricity plants derive energy from rivers without the creation of a large reservoir. The water is typically conveyed along the side of the river valley (using channels, pipes and/or tunnels) until it is high above the valley floor, whereupon it can allowed to fall through a penstock to drive a turbine. This style of generation may still produce a large amount of electricity, such as the Chief Joseph Dam on the Columbia river in the United States.
Vertical-axis wind turbines (or VAWTs) have the main rotor shaft arranged vertically. One advantage of this arrangement is that the turbine does not need to be pointed into the wind to be effective, which is an advantage on a site where the wind direction is highly variable. It is also an advantage when the turbine is integrated into a building because it is inherently less steerable. Also, the generator and gearbox can be placed near the ground, using a direct drive from the rotor assembly to the ground-based gearbox, improving accessibility for maintenance. However, these designs produce much less energy averaged over time, which is a major drawback.[24][27]
In the case of a “wind turbine generator”, the wind pushes directly against the blades of the turbine, which converts the linear motion of the wind into the rotary motion necessary to spin the generators rotor and the harder the wind pushes, the more electrical energy can be generated. Then it is important to have a good wind turbine blade design to extract as much energy out of the wind as possible.
The 1500W wind turbine is our most high powered wind turbine, made specifically for off-grid residential use in mind. Its DIY set-up instructions and with all the materials needed provided for, you will be able to set the wind turbine up in no time at all. The 1500W wind turbine is durable, low maintenance and the most powerful wind turbine in our line up of wind turbine having weighing at only 33 lbs. Coated with special high weather tolerant protection spray to protect the wind turbine from the elements such as rain. It is a completely self-sustaining stand-alone device that will continuously generates 100% clean GREEN renewable energy, without you being present or around it.
We harness the earth’s most abundant resources – the strength of the wind, the heat of the sun and the force of water – to power the world’s biggest economies and the most remote communities. Combining onshore and offshore wind, hydro and innovative technologies, GE Renewable Energy has installed more than 400+ gigawatts capacity globally to make the world work better and cleaner.
Due to data transmission problems, structural health monitoring of wind turbines is usually performed using several accelerometers and strain gages attached to the nacelle to monitor the gearbox and equipments. Currently, digital image correlation and stereophotogrammetry are used to measure dynamics of wind turbine blades. These methods usually measure displacement and strain to identify location of defects. Dynamic characteristics of non-rotating wind turbines have been measured using digital image correlation and photogrammetry.[44] Three dimensional point tracking has also been used to measure rotating dynamics of wind turbines.[45]
By participating in a green energy program a consumer may be having an effect on the energy sources used and ultimately might be helping to promote and expand the use of green energy. They are also making a statement to policy makers that they are willing to pay a price premium to support renewable energy. Green energy consumers either obligate the utility companies to increase the amount of green energy that they purchase from the pool (so decreasing the amount of non-green energy they purchase), or directly fund the green energy through a green power provider. If insufficient green energy sources are available, the utility must develop new ones or contract with a third party energy supplier to provide green energy, causing more to be built. However, there is no way the consumer can check whether or not the electricity bought is "green" or otherwise.

Kits (3) Wind Turbine Products (91)    - Wind Turbines (14)    - Primus Wind Turbines (2)    - SkyMAX Wind™ Turbines (1)    - Wind Turbine Blades (16)    - Wind Turbine Hubs & Hub Adapters (7)    - Wind Turbine PMAs & PMGs (20)    - Wind Turbine Tails (2)    - Brake Switches (5)    - Diversion Dump Load Resistors (8)    - Wind Turbine Hardware (18) Hydro Products (6)    - Freedom & Freedom II Hydroelectric PMGs (2)    - Hydro Parts & Accessories (4) Solar Products (71)    - Solar Panels (9)    - Solar Panel Kits (3)    - Solar Charge Controllers (35)    - Solar Panel Mounting (23) Charge Controllers (79)    - Wind Turbine Charge Controllers (1)    - MidNite Classic MPPT Charge Controllers (13)    - Solar Charge Controllers (35)    - Wind & Solar Hybrid Charge Controllers (34)    - SkyMAX Wind Hybrid Charge Controllers (1) Power Without Batteries (3) Power Inverters (134)    - Micro Inverters (4)    - Transfer Switches (1)    - UL Certified DC to AC Power Inverters (12)    - Grid Tie Feed Inverters (28)    - Low Frequency Inverter Chargers (41)    - Modified Sine Power Inverters (28)    - Pure Sine Wave Inverters (24)    - Inverter Cables (16)    - 220 Volt 50 Hz Inverters (2)    - Power Inverter Remotes (7) Cable & Electrical Components (130)    - Disconnect Switches (4)    - Steel Enclosures (3)    - Cable, Terminals, & Connectors (69)    - Fuses & Breakers (23)    - Surge Protection (2)    - 3 Phase Rectifiers (9)    - Blocking Diodes (7) Renewable Energy Appliances (16)    - Solar DC Powered Chest Freezers (7)    - DC Ceiling Fans (1)    - LED Lights (2)    - Other (6) DC and AC Meters (23)    - Amp Meters (12)    - Volt Meters (9)    - Watt Meters (2) DC Water Heater Elements (6) Pond Aeration (26)    - Aeration Kits (10)    - Air Pumps (7)    - Hoses & Accessories (10) DC to DC Step Down Converters (7) Batteries (29)    - Flooded Lead Acid Batteries (5)    - Lithium Ion Batteries (2)    - Sealed AGM Batteries (4)    - Battery Accessories (11)    - Battery Desulfators and Chargers (7)
Also, the output voltage and power demand depends entirely upon the appliances you have and how you wish to use them. In addition, the location of the wind turbine generator, would the wind resource keep it constantly rotating for long periods of time or would the generator speed and therefore its output vary up and down with variations in the available wind.
Materials for wind turbine parts other than the rotor blades (including the rotor hub, gearbox, frame, and tower) are largely composed of steel. Modern turbines use a couple of tons of copper for generators, cables, and such.[52] Smaller wind turbines have begun incorporating more aluminum based alloys into these components in an effort to make the turbines lighter and more efficient, and may continue to be used increasingly if fatigue and strength properties can be improved. Prestressed concrete has been increasingly used for the material of the tower, but still requires much reinforcing steel to meet the strength requirement of the turbine. Additionally, step-up gearboxes are being increasingly replaced with variable speed generators, increasing the demand for magnetic materials in wind turbines.[46] In particular, this would require an increased supply of the rare earth metal neodymium.
†Offer is available to Texas residential customers who enroll using the Promotion Code “NIGHTSFREE”. Plan bills a monthly Base Charge, an Energy Charge, and passes through Utility Transmission and Distribution delivery charges. Energy Charges for usage consumed between 9pm and 7am each day is credited back on your bill. The utility charges, including delivery charges for night time hours, are passed through at cost and aggregated on your bill. See Electricity Facts Label for details.
Brazil has one of the largest renewable energy programs in the world, involving production of ethanol fuel from sugar cane, and ethanol now provides 18 percent of the country's automotive fuel. As a result of this, together with the exploitation of domestic deep water oil sources, Brazil, which years ago had to import a large share of the petroleum needed for domestic consumption, recently reached complete self-sufficiency in oil.[36][37][38]
UN Conference on the Human Environment (Stockholm 1972) Brundtlandt Commission Report (1983) Our Common Future (1987) Earth Summit (1992) Rio Declaration on Environment and Development Agenda 21 (1992) Convention on Biological Diversity (1992) ICPD Programme of Action (1994) Earth Charter Lisbon Principles UN Millennium Declaration (2000) Earth Summit 2002 (Rio+10, Johannesburg) United Nations Conference on Sustainable Development (Rio+20, 2012) Sustainable Development Goals

This discussion is mainly about factory-made grid-tie wind turbines. The off-grid crowd has an entirely different set of decisions and goals. The main ones are that for off-grid use economic viability in comparison with the electrical grid is not an issue, and a wind turbine can make up for the loss of sunlight (and PV electricity) in the winter months. For the DIY group there are several good turbine designs available; Hugh Piggott and the two Dans have written books that outline this step-by-step. Building your own turbine can be a great hobby, and some of the topics touched below apply (such as proper site selection), but this discussion is not about those. The decisions involved in making your own turbine, and the cost basis, have little overlap with a the process of having an installer put a factory-made turbine in your backyard.
Based on REN21's 2017 report, renewables contributed 19.3% to humans' global energy consumption and 24.5% to their generation of electricity in 2015 and 2016, respectively. This energy consumption is divided as 8.9% coming from traditional biomass, 4.2% as heat energy (modern biomass, geothermal and solar heat), 3.9% hydro electricity and 2.2% is electricity from wind, solar, geothermal, and biomass. Worldwide investments in renewable technologies amounted to more than US$286 billion in 2015, with countries such as China and the United States heavily investing in wind, hydro, solar and biofuels.[5] Globally, there are an estimated 7.7 million jobs associated with the renewable energy industries, with solar photovoltaics being the largest renewable employer.[6] As of 2015 worldwide, more than half of all new electricity capacity installed was renewable.[7]
In 2016, the city bought its way out of a contract providing energy derived from fossil fuels and arranged to get its power from a 97-unit windfarm in Adrian, Texas, about 500 miles away in the Texas Panhandle. Georgetown doesn’t own the farm, but its agreement allowed the owners to get the financing to build it. This spring, Georgetown is adding power from a 154-megawatt solar farm being built by NRG Energy in Fort Stockton, 340 miles to the west of the city.
In 2006 California approved the 'California Solar Initiative', offering a choice of investment subsidies or FIT for small and medium systems and a FIT for large systems. The small-system FIT of $0.39 per kWh (far less than EU countries) expires in just 5 years, and the alternate "EPBB" residential investment incentive is modest, averaging perhaps 20% of cost. All California incentives are scheduled to decrease in the future depending as a function of the amount of PV capacity installed.
×