Wind-to-rotor efficiency (including rotor blade friction and drag) are among the factors impacting the final price of wind power.[16] Further inefficiencies, such as gearbox losses, generator and converter losses, reduce the power delivered by a wind turbine. To protect components from undue wear, extracted power is held constant above the rated operating speed as theoretical power increases at the cube of wind speed, further reducing theoretical efficiency. In 2001, commercial utility-connected turbines deliver 75% to 80% of the Betz limit of power extractable from the wind, at rated operating speed.[17][18][needs update]
Jump up ^ Faunce, T. A.; Lubitz, W.; Rutherford, A. W. (Bill); MacFarlane, D.; Moore, G. F.; Yang, P.; Nocera, D. G; Moore, Tom A; Gregory, Duncan H; Fukuzumi, Shunichi; Yoon, Kyung B.; Armstrong, F. A.; Wasielewski, M. R.; Styring, S. (2013), "Energy and environment policy case for a global project on artificial photosynthesis", Energy & Environmental Science, 6 (3): 695–698, doi:10.1039/C3EE00063J, archived from the original on 16 August 2013

Another situation where a small wind turbine can make good sense is in case your province, state, or country has rebates or other incentives that make it cheap to install one (just keep ongoing maintenance and repair cost in mind as well). While we would like to advocate responsible spending of government money, the small wind industry needs many more customers to mature. It takes time and installation numbers for manufacturers to work out the bugs, make better turbines, and make them cheaper.

In 2016, the city bought its way out of a contract providing energy derived from fossil fuels and arranged to get its power from a 97-unit windfarm in Adrian, Texas, about 500 miles away in the Texas Panhandle. Georgetown doesn’t own the farm, but its agreement allowed the owners to get the financing to build it. This spring, Georgetown is adding power from a 154-megawatt solar farm being built by NRG Energy in Fort Stockton, 340 miles to the west of the city.

Wind turbines need wind. Not just any wind, but the nicely flowing, smooth, laminar kind. That cannot be found at 30 feet height. It can usually not be found at 60 feet. Sometimes you find it at 80 feet. More often than not it takes 100 feet of tower to get there. Those towers cost as much or more, installed, as the turbine itself. How much tower you need for a wind turbine to live up to its potential depends on your particular site; on the trees and structures around it etc. Close to the ground the wind is turbulent, and makes a poor fuel for a small wind turbine.
Biomass is biological material derived from living, or recently living organisms. It most often refers to plants or plant-derived materials which are specifically called lignocellulosic biomass.[65] As an energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel. Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into: thermal, chemical, and biochemical methods. Wood remains the largest biomass energy source today;[66] examples include forest residues – such as dead trees, branches and tree stumps –, yard clippings, wood chips and even municipal solid waste. In the second sense, biomass includes plant or animal matter that can be converted into fibers or other industrial chemicals, including biofuels. Industrial biomass can be grown from numerous types of plants, including miscanthus, switchgrass, hemp, corn, poplar, willow, sorghum, sugarcane, bamboo,[67] and a variety of tree species, ranging from eucalyptus to oil palm (palm oil).
flywheel energy storage, pumped-storage hydroelectricity is more usable in stationary applications (e.g. to power homes and offices). In household power systems, conversion of energy can also be done to reduce smell. For example, organic matter such as cow dung and spoilable organic matter can be converted to biochar. To eliminate emissions, carbon capture and storage is then used.
Home wind turbines are electric generators that convert wind energy into clean, emission-free power. Although most large wind farms exist to power certain towns and communities, there are also smaller wind turbines for homes and homeowners. These smaller turbines can be installed on any part of your property to cover some or even all of your monthly energy needs.
Solar water heating makes an important contribution to renewable heat in many countries, most notably in China, which now has 70% of the global total (180 GWth). Most of these systems are installed on multi-family apartment buildings and meet a portion of the hot water needs of an estimated 50–60 million households in China. Worldwide, total installed solar water heating systems meet a portion of the water heating needs of over 70 million households. The use of biomass for heating continues to grow as well. In Sweden, national use of biomass energy has surpassed that of oil. Direct geothermal for heating is also growing rapidly.[28] The newest addition to Heating is from Geothermal Heat Pumps which provide both heating and cooling, and also flatten the electric demand curve and are thus an increasing national priority[29][30] (see also Renewable thermal energy).

In 2014 global wind power capacity expanded 16% to 369,553 MW.[83] Yearly wind energy production is also growing rapidly and has reached around 4% of worldwide electricity usage,[84] 11.4% in the EU,[85] and it is widely used in Asia, and the United States. In 2015, worldwide installed photovoltaics capacity increased to 227 gigawatts (GW), sufficient to supply 1 percent of global electricity demands.[86] Solar thermal energy stations operate in the United States and Spain, and as of 2016, the largest of these is the 392 MW Ivanpah Solar Electric Generating System in California.[87][88] The world's largest geothermal power installation is The Geysers in California, with a rated capacity of 750 MW. Brazil has one of the largest renewable energy programs in the world, involving production of ethanol fuel from sugar cane, and ethanol now provides 18% of the country's automotive fuel. Ethanol fuel is also widely available in the United States.
Energy engineering Oil refinery Fossil-fuel power station Cogeneration Integrated gasification combined cycle Electric power Nuclear power Nuclear power plant Radioisotope thermoelectric generator Solar power Photovoltaic system Concentrated solar power Solar thermal energy Solar power tower Solar furnace Wind power Wind farm High-altitude wind power Geothermal power Hydropower Hydroelectricity Wave farm Tidal power Biomass

A 1.5 (MW) wind turbine of a type frequently seen in the United States has a tower 80 meters (260 ft) high. The rotor assembly (blades and hub) weighs 22,000 kilograms (48,000 lb). The nacelle, which contains the generator, weighs 52,000 kilograms (115,000 lb). The concrete base for the tower is constructed using 26,000 kilograms (58,000 lb) reinforcing steel and contains 190 cubic meters (250 cu yd) of concrete. The base is 15 meters (50 ft) in diameter and 2.4 meters (8 ft) thick near the center.[43]
Renewable energy is energy that is collected from renewable resources, which are naturally replenished on a human timescale, such as sunlight, wind, rain, tides, waves, and geothermal heat.[3] Renewable energy often provides energy in four important areas: electricity generation, air and water heating/cooling, transportation, and rural (off-grid) energy services.[4]
Adam Schultz, a senior policy analyst for the Oregon Department of Energy, says he’s more encouraged than ever about the prospects for renewables. Because the Pacific Northwest features large-scale hydropower plants built as part of the New Deal, energy already tends to be less expensive there than the U.S. average. But solar and wind power have “gotten cheaper over the last couple years to the point that I can’t even tell you what the costs are because costs have been dropping so rapidly,” Schultz says. “We have enough sunshine,” he says (presumably referring to the eastern part of the state), “so it’s just a matter of time.”
The oldest solar thermal power plant in the world is the 354 megawatt (MW) SEGS thermal power plant, in California.[109] The Ivanpah Solar Electric Generating System is a solar thermal power project in the California Mojave Desert, 40 miles (64 km) southwest of Las Vegas, with a gross capacity of 377 MW.[110] The 280 MW Solana Generating Station is a solar power plant near Gila Bend, Arizona, about 70 miles (110 km) southwest of Phoenix, completed in 2013. When commissioned it was the largest parabolic trough plant in the world and the first U.S. solar plant with molten salt thermal energy storage.[111]
What is a small wind turbine? Anything under, say, 10 meters rotor diameter (30 feet) is well within the “small wind” category. That works out to wind turbines with a rated power up to around 20 kW (at 11 m/s, or 25 mph). For larger wind turbines the manufacturers are usually a little more honest, and more money is available to do a good site analysis. The information in this article is generic: The same applies to all the other brands and models, be they of the HAWT (Horizontal Axis Wind Turbine) or VAWT (Vertical Axis Wind Turbine) persuasion.
We now know that the electrical generator provides a means of energy conversion between the mechanical torque generated by the rotor blades, called the prime mover, and some electrical load. The mechanical connection of the wind turbine generator to the rotor blades is made through a main shaft which can be either a simple direct drive, or by using a gearbox to increase or decrease the generator speed relative to the rotational speed of the blades.
Since we mentioned maintenance: Consider that in a reasonably windy place a wind turbine can run 7000 hours or more per year. If it were a car, going at 50 km/h (30 mph), it would travel 350,000 km (or 200,000+ miles). That means you should plan for an annual inspection, and perform the needed maintenance (greasing for example), regardless of the recommendation of the manufacturer. It is just as important to inspect and maintain the tower annually. We know of a tower that collapsed because nuts worked themselves loose from their bolts over 2½ years time, no inspection nor maintenance were done during that time, ultimately leading to its undoing. Wind turbines and towers live in a very harsh environment. It is important to check for issues, such as loose bolts or tower guy wires that need re-tensioning, before they become a problem.

Solar and wind are Intermittent energy sources that supply electricity 10-40% of the time. To compensate for this characteristic, it is common to pair their production with already existing hydroelectricity or natural gas generation. In regions where this isn't available, wind and solar can be paired with significantly more expensive pumped-storage hydroelectricity.
The terms wind energy or wind power describe the process by which the wind is used to generate mechanical power or electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. This mechanical power can be used for specific tasks (such as grinding grain or pumping water) or a generator can convert this mechanical power into electricity.

Renewable energy technology has sometimes been seen as a costly luxury item by critics, and affordable only in the affluent developed world. This erroneous view has persisted for many years, but 2015 was the first year when investment in non-hydro renewables, was higher in developing countries, with $156 billion invested, mainly in China, India, and Brazil.[134]
In 2010, the United States led the world in geothermal electricity production with 3,086 MW of installed capacity from 77 power plants;[132] the largest group of geothermal power plants in the world is located at The Geysers, a geothermal field in California.[133] The Philippines follows the US as the second highest producer of geothermal power in the world, with 1,904 MW of capacity online; geothermal power makes up approximately 18% of the country's electricity generation.[132]
Turbines used in wind farms for commercial production of electric power are usually three-bladed. These have low torque ripple, which contributes to good reliability. The blades are usually colored white for daytime visibility by aircraft and range in length from 20 to 80 meters (66 to 262 ft). The size and height of turbines increase year by year. Offshore wind turbines are built up to 8(MW) today and have a blade length up to 80 meters (260 ft). Usual tubular steel towers of multi megawatt turbines have a height of 70 m to 120 m and in extremes up to 160 m.
There are different types of inverters for solar use (string, central, micro). If you’re hoping to install the solar PV system yourself, selecting the best inverter will require serious research and careful planning. If you work through a professional solar installer, on the other hand, the company should help take care of inverter selection for you.
Even if you can’t directly purchase and install a solar system because you rent your home, have inadequate solar resources, or lack financing, you may still benefit from switching to solar electricity, and there numerous business models that make solar easier, cheaper, and more accessible. Options such as community or shared solar programs, solar leases, and power-purchase agreements allow millions of households to take advantage of solar energy. Learn about the various ways you can go solar.
When power flows from the generator to your house, electrons get mixed together on the wires. You can't specify which electrons you get, but you can make sure that your money goes to support clean, sustainable  generators, which has the effect of making the whole system "greener". To do this, you will need to look closely at utility marketing claims and materials. To ensure that the claims are truthful, many states now require disclosure labels, just like the nutrition labels on food packages. But don't hesitate to ask for more information directly from potential suppliers, including the percentage of power derived from each fuel source and the level of each of the above emissions compared with the regional average.
Renewable energy resources and significant opportunities for energy efficiency exist over wide geographical areas, in contrast to other energy sources, which are concentrated in a limited number of countries. Rapid deployment of renewable energy and energy efficiency, and technological diversification of energy sources, would result in significant energy security and economic benefits.[8] It would also reduce environmental pollution such as air pollution caused by burning of fossil fuels and improve public health, reduce premature mortalities due to pollution and save associated health costs that amount to several hundred billion dollars annually only in the United States.[21] Renewable energy sources, that derive their energy from the sun, either directly or indirectly, such as hydro and wind, are expected to be capable of supplying humanity energy for almost another 1 billion years, at which point the predicted increase in heat from the sun is expected to make the surface of the earth too hot for liquid water to exist.[22][23]
Alternatively, SRECs allow for a market mechanism to set the price of the solar generated electricity subsity. In this mechanism, a renewable energy production or consumption target is set, and the utility (more technically the Load Serving Entity) is obliged to purchase renewable energy or face a fine (Alternative Compliance Payment or ACP). The producer is credited for an SREC for every 1,000 kWh of electricity produced. If the utility buys this SREC and retires it, they avoid paying the ACP. In principle this system delivers the cheapest renewable energy, since the all solar facilities are eligible and can be installed in the most economic locations. Uncertainties about the future value of SRECs have led to long-term SREC contract markets to give clarity to their prices and allow solar developers to pre-sell and hedge their credits.
In 2010, the International Energy Agency predicted that global solar PV capacity could reach 3,000 GW or 11% of projected global electricity generation by 2050—enough to generate 4,500 TWh of electricity.[40] Four years later, in 2014, the agency projected that, under its "high renewables" scenario, solar power could supply 27% of global electricity generation by 2050 (16% from PV and 11% from CSP).[2]
×