Thermal storage technologies allow heat or cold to be stored for periods of time ranging from hours or overnight to interseasonal, and can involve storage of sensible energy (i.e. by changing the temperature of a medium) or latent energy (i.e. through phase changes of a medium, such between water and slush or ice). Short-term thermal storages can be used for peak-shaving in district heating or electrical distribution systems. Kinds of renewable or alternative energy sources that can be enabled include natural energy (e.g. collected via solar-thermal collectors, or dry cooling towers used to collect winter's cold), waste energy (e.g. from HVAC equipment, industrial processes or power plants), or surplus energy (e.g. as seasonally from hydropower projects or intermittently from wind farms). The Drake Landing Solar Community (Alberta, Canada) is illustrative. borehole thermal energy storage allows the community to get 97% of its year-round heat from solar collectors on the garage roofs, which most of the heat collected in summer.[58][59] Types of storages for sensible energy include insulated tanks, borehole clusters in substrates ranging from gravel to bedrock, deep aquifers, or shallow lined pits that are insulated on top. Some types of storage are capable of storing heat or cold between opposing seasons (particularly if very large), and some storage applications require inclusion of a heat pump. Latent heat is typically stored in ice tanks or what are called phase-change materials (PCMs).
Several groups in various sectors are conducting research on Jatropha curcas, a poisonous shrub-like tree that produces seeds considered by many to be a viable source of biofuels feedstock oil.[117] Much of this research focuses on improving the overall per acre oil yield of Jatropha through advancements in genetics, soil science, and horticultural practices. SG Biofuels, a San Diego-based Jatropha developer, has used molecular breeding and biotechnology to produce elite hybrid seeds of Jatropha that show significant yield improvements over first generation varieties.[118] The Center for Sustainable Energy Farming (CfSEF) is a Los Angeles-based non-profit research organization dedicated to Jatropha research in the areas of plant science, agronomy, and horticulture. Successful exploration of these disciplines is projected to increase Jatropha farm production yields by 200-300% in the next ten years.[119]
In the 1980s and early 1990s, most photovoltaic modules provided remote-area power supply, but from around 1995, industry efforts have focused increasingly on developing building integrated photovoltaics and power plants for grid connected applications (see photovoltaic power stations article for details). Currently the largest photovoltaic power plant in North America is the Nellis Solar Power Plant (15 MW).[24][25] There is a proposal to build a Solar power station in Victoria, Australia, which would be the world's largest PV power station, at 154 MW.[26][27] Other large photovoltaic power stations include the Girassol solar power plant (62 MW),[28] and the Waldpolenz Solar Park (40 MW).[29]
Previously, the largest U.S. city fully powered by renewables was Burlington, Vermont (pop. 42,000), home to Senator Bernie Sanders, the jam band Phish and the original Ben & Jerry’s. Georgetown’s feat is all the more dramatic because it demolishes the notion that sustainability is synonymous with socialism and GMO-free ice cream. “You think of climate change and renewable energy, from a political standpoint, on the left-hand side of the spectrum, and what I’ve done is toss all those partisan political thoughts aside,” Ross says. “We’re doing this because it’s good for our citizens. Cheaper electricity is better. Clean energy is better than fossil fuels.”
The windwheel of Hero of Alexandria (10 AD – 70 AD) marks one of the first recorded instances of wind powering a machine in history.[2][3] However, the first known practical wind power plants were built in Sistan, an Eastern province of Persia (now Iran), from the 7th century. These "Panemone" were vertical axle windmills, which had long vertical drive shafts with rectangular blades.[4] Made of six to twelve sails covered in reed matting or cloth material, these windmills were used to grind grain or draw up water, and were used in the gristmilling and sugarcane industries.[5]
The Sunforce 44444 400 Watt Wind Generator uses wind to generate power and run your appliances and electronics, helping to produce electricity at cabins and worksites far from existing power lines. Constructed from lightweight, weatherproof cast aluminum, this generator charges 12-volt batteries for large power demands in both land and marine environments. With a maximum power up to 400 watts, this device features a fully integrated regulator that automatically shuts down when the batteries are completely charged.
Biomass, biogas and biofuels are burned to produce heat/power and in doing so harm the environment. Pollutants such as sulphurous oxides (SOx), nitrous oxides (NOx), and particulate matter (PM) are produced from the combustion of biomass; the World Health Organisation estimates that 7 million premature deaths are caused each year by air pollution.[77] Biomass combustion is a major contributor.[77][78][79]
The primary obstacle that is preventing the large scale implementation of solar powered energy generation is the inefficiency of current solar technology. Currently, photovoltaic (PV) panels only have the ability to convert around 24% of the sunlight that hits them into electricity.[125] At this rate, solar energy still holds many challenges for widespread implementation, but steady progress has been made in reducing manufacturing cost and increasing photovoltaic efficiency. Both Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), have heavily funded solar research programs. The NREL solar program has a budget of around $75 million [126] and develops research projects in the areas of photovoltaic (PV) technology, solar thermal energy, and solar radiation.[127] The budget for Sandia’s solar division is unknown, however it accounts for a significant percentage of the laboratory’s $2.4 billion budget.[128] Several academic programs have focused on solar research in recent years. The Solar Energy Research Center (SERC) at University of North Carolina (UNC) has the sole purpose of developing cost effective solar technology. In 2008, researchers at Massachusetts Institute of Technology (MIT) developed a method to store solar energy by using it to produce hydrogen fuel from water.[129] Such research is targeted at addressing the obstacle that solar development faces of storing energy for use during nighttime hours when the sun is not shining. In February 2012, North Carolina-based Semprius Inc., a solar development company backed by German corporation Siemens, announced that they had developed the world’s most efficient solar panel. The company claims that the prototype converts 33.9% of the sunlight that hits it to electricity, more than double the previous high-end conversion rate.[130] Major projects on artificial photosynthesis or solar fuels are also under way in many developed nations.[131]
The British Energy Savings Trust report titled “Location, location, location”: This requires some reading-between-the-lines as the Trust is rather closely aligned with the small wind industry. They looked at 57 turbines for a year, a number of them building mounted, others tower mounted, and concluded that building mounted turbines did very poorly.
This is a wind map of the lands south of the border (the US) for 30 meters (100′) height, a very common height for small wind turbine installations. Anything green or yellow is not a good wind resource location. Here in Canada the distribution is similar, in that the good places are in the mid-west and very close to the shores of the great lakes and oceans.
In Texas, the top energy sources had long been coal, natural gas and nuclear. But, perhaps surprisingly, the Lone Star State also leads the nation in wind power; capacity doubled between 2010 and 2017, surpassing nuclear and coal and now accounting for nearly a quarter of all the wind energy in the United States. Solar production has been increasing, too. By the end of last year, Texas ranked ninth in the nation on that front.
From the end of 2004, worldwide renewable energy capacity grew at rates of 10–60% annually for many technologies. In 2015 global investment in renewables rose 5% to $285.9 billion, breaking the previous record of $278.5 billion in 2011. 2015 was also the first year that saw renewables, excluding large hydro, account for the majority of all new power capacity (134 GW, making up 53.6% of the total). Of the renewables total, wind accounted for 72 GW and solar photovoltaics 56 GW; both record-breaking numbers and sharply up from 2014 figures (49 GW and 45 GW respectively). In financial terms, solar made up 56% of total new investment and wind accounted for 38%.
These residential renewable energy plans are sourced from 100% wind power generation. In addition, a Green Power plan lets you lock in a secure, fixed energy rate with the same key benefits as Champion Energy’s traditional electricity plans. This is an ideal choice for customers looking for ways to preserve the environment, conserve natural resources and promote the growth of renewable energy infrastructure.
Several large-scale energy storage suggestions for the grid have been done. Worldwide there is over 100 GW of Pumped-storage hydroelectricity. This improves efficiency and decreases energy losses but a conversion to an energy storing mains electricity grid is a very costly solution. Some costs could potentially be reduced by making use of energy storage equipment the consumer buys and not the state. An example is batteries in electric cars that would double as an energy buffer for the electricity grid. However besides the cost, setting-up such a system would still be a very complicated and difficult procedure. Also, energy storage apparatus' as car batteries are also built with materials that pose a threat to the environment (e.g. Lithium). The combined production of batteries for such a large part of the population would still have environmental concerns. Besides car batteries however, other Grid energy storage projects make use of less polluting energy carriers (e.g. compressed air tanks and flywheel energy storage).

As competition in the wind market increases, companies are seeking ways to draw greater efficiency from their designs. One of the predominant ways wind turbines have gained performance is by increasing rotor diameters, and thus blade length. Retrofitting current turbines with larger blades mitigates the need and risks associated with a system-level redesign. As the size of the blade increases, its tendency to deflect also increases. Thus, from a materials perspective, the stiffness-to-weight is of major importance. As the blades need to function over a 100 million load cycles over a period of 20–25 years, the fatigue life of the blade materials is also of utmost importance. By incorporating carbon fiber into parts of existing blade systems, manufacturers may increase the length of the blades without increasing their overall weight. For instance, the spar cap, a structural element of a turbine blade, commonly experiences high tensile loading, making it an ideal candidate to utilize the enhanced tensile properties of carbon fiber in comparison to glass fiber.[47] Higher stiffness and lower density translates to thinner, lighter blades offering equivalent performance. In a 10 (MW) turbine—which will become more common in offshore systems by 2021—blades may reach over 100 m in length and weigh up to 50 metric tons when fabricated out of glass fiber. A switch to carbon fiber in the structural spar of the blade yields weight savings of 20 to 30 percent, or approximately 15 metric tons.[48]

Going forward, there is hope for the small wind future! Certification programs are under way in various places to provide real turbine performance data. In North America this is being spearheaded by the Small Wind Certification Council, which requires third-party certification of turbine performance in a standardized fashion. Manufacturers will no longer be able to fudge power curves, or specify ‘rated power’ at hurricane-force wind speeds. This will allow you, the consumer, to compare turbines on a much more even footing.
Many residential PV systems are connected to the grid wherever available, especially in developed countries with large markets.[10] In these grid-connected PV systems, use of energy storage is optional. In certain applications such as satellites, lighthouses, or in developing countries, batteries or additional power generators are often added as back-ups. Such stand-alone power systems permit operations at night and at other times of limited sunlight.
×