A 2014-published life-cycle analysis of land use for various sources of electricity concluded that the large-scale implementation of solar and wind potentially reduces pollution-related environmental impacts. The study found that the land-use footprint, given in square meter-years per megawatt-hour (m2a/MWh), was lowest for wind, natural gas and rooftop PV, with 0.26, 0.49 and 0.59, respectively, and followed by utility-scale solar PV with 7.9. For CSP, the footprint was 9 and 14, using parabolic troughs and solar towers, respectively. The largest footprint had coal-fired power plants with 18 m2a/MWh.[146]
Maybe you reside on a boat, vacation in a remote cabin, or live off-grid like me. Or perhaps you’re just interested in lowering your energy bill. Either way, with a handful of inexpensive and easy-to-source materials, you can build a homemade wind generator, making electricity yours for the taking for as long as the wind is blowing. You’ll be able to light up that storeroom, power your barn, or use a generator to keep all your vehicle batteries charged.
As suppliers of inverters for turbines good, bad, and just plain ugly, we have pretty well seen it all when it comes to turbine failure. We can tell you unequivocally that you get what you pay for. Depending on your sense of adventure that can be good or bad; if you plan to go cheap, plan on (you) being the manufacturer’s R&D department and test center. Being a really good do-it-yourselfer with an understanding of wind turbines, alternators, and all things electric will come in very handy too. Just in case you do not believe us, you can read about it in this Green Power Talk thread. There are more threads with similar content on the forum, just browse around a little.
†Offer is available to Texas residential customers who enroll using the Promotion Code “NIGHTSFREE”. Plan bills a monthly Base Charge, an Energy Charge, and passes through Utility Transmission and Distribution delivery charges. Energy Charges for usage consumed between 9pm and 7am each day is credited back on your bill. The utility charges, including delivery charges for night time hours, are passed through at cost and aggregated on your bill. See Electricity Facts Label for details.

The combination of wind and solar PV has the advantage that the two sources complement each other because the peak operating times for each system occur at different times of the day and year. The power generation of such solar hybrid power systems is therefore more constant and fluctuates less than each of the two component subsystems.[21] Solar power is seasonal, particularly in northern/southern climates, away from the equator, suggesting a need for long term seasonal storage in a medium such as hydrogen or pumped hydroelectric.[117] The Institute for Solar Energy Supply Technology of the University of Kassel pilot-tested a combined power plant linking solar, wind, biogas and hydrostorage to provide load-following power from renewable sources.[118]
In an electricity system without grid energy storage, generation from stored fuels (coal, biomass, natural gas, nuclear) must be go up and down in reaction to the rise and fall of solar electricity (see load following power plant). While hydroelectric and natural gas plants can quickly follow solar being intermittent due to the weather, coal, biomass and nuclear plants usually take considerable time to respond to load and can only be scheduled to follow the predictable variation. Depending on local circumstances, beyond about 20–40% of total generation, grid-connected intermittent sources like solar tend to require investment in some combination of grid interconnections, energy storage or demand side management. Integrating large amounts of solar power with existing generation equipment has caused issues in some cases. For example, in Germany, California and Hawaii, electricity prices have been known to go negative when solar is generating a lot of power, displacing existing baseload generation contracts.[107][108]
Currently, flying manned electric aircraft are mostly experimental demonstrators, though many small unmanned aerial vehicles are powered by batteries. Electrically powered model aircraft have been flown since the 1970s, with one report in 1957.[186][187] The first man-carrying electrically powered flights were made in 1973.[188] Between 2015–2016, a manned, solar-powered plane, Solar Impulse 2, completed a circumnavigation of the Earth.[189]
Buying a wind turbine generator such as the Windmax HY1000 to produce wind energy is not easy and there are a lot of factors to take into account. Price is only one of them. Be sure to choose an electrical machine that meets your needs. If you are installing a grid-connected system, choose an AC mains voltage generator. If you are installing a battery-based system, look for a battery-charging DC generator. Also consider the mechanical design of a generator such as size and weight, operating speed and protection from the environment as it will spend all of its life mounted at the top of a pole or tower.
The stiffness of composites is determined by the stiffness of fibers and their volume content. Typically, E-glass fibers are used as main reinforcement in the composites. Typically, the glass/epoxy composites for wind blades contain up to 75 weight % glass. This increases the stiffness, tensile and compression strength. A promising source of the composite materials in the future is glass fibers with modified compositions like S-glass, R-glass etc. Some other special glasses developed by Owens Corning are ECRGLAS, Advantex and most recently WindStrand glass fibers. [49]
2010 was a record year for green energy investments. According to a report from Bloomberg New Energy Finance, nearly US $243 billion was invested in wind farms, solar power, electric cars, and other alternative technologies worldwide, representing a 30 percent increase from 2009 and nearly five times the money invested in 2004. China had $51.1 billion investment in clean energy projects in 2010, by far the largest figure for any country.[155]
Large three-bladed horizontal-axis wind turbines (HAWT), with the blades upwind of the tower produce the overwhelming majority of windpower in the world today. These turbines have the main rotor shaft and electrical generator at the top of a tower, and must be pointed into the wind. Small turbines are pointed by a simple wind vane, while large turbines generally use a wind sensor coupled with a yaw system. Most have a gearbox, which turns the slow rotation of the blades into a quicker rotation that is more suitable to drive an electrical generator.[25] Some turbines use a different type of generator suited to slower rotational speed input. These don't need a gearbox, and are called direct-drive, meaning they couple the rotor directly to the generator with no gearbox in between. While permanent magnet direct-drive generators can be more costly due to the rare earth materials required, these gearless turbines are sometimes preferred over gearbox generators because they "eliminate the gear-speed increaser, which is susceptible to significant accumulated fatigue torque loading, related reliability issues, and maintenance costs."[26]
Second-generation technologies include solar heating and cooling, wind power, modern forms of bioenergy and solar photovoltaics. These are now entering markets as a result of research, development and demonstration (RD&D) investments since the 1980s. The initial investment was prompted by energy security concerns linked to the oil crises (1973 and 1979) of the 1970s but the continuing appeal of these renewables is due, at least in part, to environmental benefits. Many of the technologies reflect significant advancements in materials.
The terms wind energy or wind power describe the process by which the wind is used to generate mechanical power or electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. This mechanical power can be used for specific tasks (such as grinding grain or pumping water) or a generator can convert this mechanical power into electricity.

Biofuels - Rather than burning biomass to produce energy, sometimes these renewable organic materials are transformed into fuel. Notable examples include ethanol and biodiesel. Biofuels provided 2.7 percent of the world's fuels for road transport in 2010, and have the potential to meet more than 25 percent of world demand for transportation fuels by 2050.


As competition in the wind market increases, companies are seeking ways to draw greater efficiency from their designs. One of the predominant ways wind turbines have gained performance is by increasing rotor diameters, and thus blade length. Retrofitting current turbines with larger blades mitigates the need and risks associated with a system-level redesign. As the size of the blade increases, its tendency to deflect also increases. Thus, from a materials perspective, the stiffness-to-weight is of major importance. As the blades need to function over a 100 million load cycles over a period of 20–25 years, the fatigue life of the blade materials is also of utmost importance. By incorporating carbon fiber into parts of existing blade systems, manufacturers may increase the length of the blades without increasing their overall weight. For instance, the spar cap, a structural element of a turbine blade, commonly experiences high tensile loading, making it an ideal candidate to utilize the enhanced tensile properties of carbon fiber in comparison to glass fiber.[47] Higher stiffness and lower density translates to thinner, lighter blades offering equivalent performance. In a 10 (MW) turbine—which will become more common in offshore systems by 2021—blades may reach over 100 m in length and weigh up to 50 metric tons when fabricated out of glass fiber. A switch to carbon fiber in the structural spar of the blade yields weight savings of 20 to 30 percent, or approximately 15 metric tons.[48]
Al Gore says the reason is innovation. “The cost-reduction curve that came to technologies like computers, smartphones and flat-panel televisions has come to solar energy, wind energy and battery storage,” he says. “I remember being startled decades ago when people first started to explain to me that the cost of computing was being cut in half every 18 to 24 months. And now this dramatic economic change has begun to utterly transform the electricity markets.”
Solar thermal power stations have been successfully operating in California commercially since the late 1980s, including the largest solar power plant of any kind, the 350 MW Solar Energy Generating Systems. Nevada Solar One is another 64MW plant which has recently opened.[34] Other parabolic trough power plants being proposed are two 50MW plants in Spain, and a 100MW plant in Israel.[35]
Nuclear power. After coal, the next largest source of our electricity is nuclear power. While nuclear plants don't cause air pollution, they do create radioactive waste, which must be stored for thousands of years. As accidents at Three Mile Island and Chernobyl proved, nuclear plants also carry the risk of catastrophic failure. And nuclear power can be very expensive.
Green energy, however, utilizes energy sources that are readily available all over the world, including in rural and remote areas that don't otherwise have access to electricity. Advances in renewable energy technologies have lowered the cost of solar panels, wind turbines and other sources of green energy, placing the ability to produce electricity in the hands of the people rather than those of oil, gas, coal and utility companies.

Brazil has one of the largest renewable energy programs in the world, involving production of ethanol fuel from sugar cane, and ethanol now provides 18 percent of the country's automotive fuel. As a result of this, together with the exploitation of domestic deep water oil sources, Brazil, which years ago had to import a large share of the petroleum needed for domestic consumption, recently reached complete self-sufficiency in oil.[36][37][38]
In 2010, the International Energy Agency predicted that global solar PV capacity could reach 3,000 GW or 11% of projected global electricity generation by 2050—enough to generate 4,500 TWh of electricity.[40] Four years later, in 2014, the agency projected that, under its "high renewables" scenario, solar power could supply 27% of global electricity generation by 2050 (16% from PV and 11% from CSP).[2]
×